Lecture 15

  1. LALR(1) Parsing in Java-CUP
  2. Symbol Table for LALR(1) Compilers.

1.0 - LALR(1) Parsing in Java-CUP

1.1 - Running the Java-CUP Parser Generator

1.1.1 - Grammar Summary

  1. Terminals
    • JavaCUP inserts two new terminal symbols - EOF symbol and error symbol.
  2. Non-Terminals
  3. Productions
    • Our two productions from our original grammar are [0] and [2].
    • JavaCUP inserts the production $START :== A EOF just as we did in the theory before - it introduces a new start symbol, START, and a new production where the new start symbol produces the original start symbol.
    • This production has a small technical difference to our lecture example - here JavaCUP inserts the EOF symbol at the end of the production.

1.1.2 - Automaton Summary - Viable Prefix Recogniser

===== Viable Prefix Recogniser =====
START lalr_state [0]: {
	[A ::= (*) LPAREN A RPAREN, {EOF }]
	[$START ::= (*) A EOF, {EOF }]
	[A ::= (*) a, {EOF }]
}
transition on LPAREN to state [3]
transition on a to state [2]
transition on A to state [1]

1.1.3 - Action Table

1.1.4 - Reduce Table

1.2 - Giving JavaCUP a Non-LALR(1) Grammar

1.3 - Giving JavaCUP an Ambiguous Grammar

1.4 - JavaCUP Syntax Error Recovery

1.4.1 - JavaCUP Syntax Error Recovery in Practice - LValue

2.0 - Symbol Table for LALR(1) Compilers.

This example is talking specifically about the Assignment 2 LALR(1) Compiler.

var x: int;  // first argument to C
    y: int;  // second argument to C
    res: int;  // result from C
procedure C() =
  var n: int;  // argument to fact
      f: int;  // result from fact
  procedure fact() =
    begin
      // assume 0 <= n
      if n = 0 then
        f := 1
        // f = n!
      else // 0 < n
       begin
        n := n - 1;
        call fact();
        // f = n!
        n:= n + 1;
        f := f * n
        // f = n!
       end
    end; // fact
  begin // C
    n := x;
    call fact();
    // f = x!
    res := f;
    n := y;
    call fact();
    // f = y!
    res := res / f;
    // res = x! / y!
    n := x - y;
    call fact();
    // f = (x-y)!
    res := res / f
    // res = x! / (y! * (x-y!))
  end; // C
begin // main program
  x := 6;
  y := 2;
  call C();
  write res
end

2.1 - Identifier Lookup in Scope

/**
 * Lookup id starting in the current scope and
 * thence in the parent scope and so on.
 *
 * @param id identifier to search for.
 * @return symbol table entry for the id, or null if not found.
 */
public SymEntry lookup(String id) {
    /* Lookup the entry in the current scope */
    SymEntry entry = entries.get(id);
    if (entry == null && parent != null) {
        /* If the entry is not in the current scope
         * look it up in the parent scope, if there is one.
         */
        return parent.lookup(id);
    }
    return entry;
}

2.1 - Setup of Predefined Scope

public class SymbolTable {
    private final Scope predefinedScope;

    /**
     * Construct a symbol table and build the predefined scope
     * as its initial scope.
     */
    public SymbolTable() {
        super();
        SymEntry.ProcedureEntry predefined =
                new SymEntry.ProcedureEntry("<predefined>",
                        ErrorHandler.NO_LOCATION, null);
        predefinedScope = new Scope(null, 0, predefined);
        predefined.setLocalScope(predefinedScope);
        Predefined.addPredefinedEntries(predefinedScope);
    }
}
predefined.addType("int", ErrorHandler.NO_LOCATION, INTEGER_TYPE);
predefined.addType("boolean", ErrorHandler.NO_LOCATION, BOOLEAN_TYPE);
predefined.addOperator(Operator.NEG_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_UNARY);
predefined.addOperator(Operator.ADD_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.SUB_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.MUL_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.DIV_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.EQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.NEQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.GREATER_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.LESS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.GEQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.LEQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);

2.2 - PL0 Parser - Setup of Predefined Scope

2.2.1 - Parsing a Program

Program ::=  /* empty */ 
		    {:
		        /* This action occurs before the whole program is recognised.
		         * It constructs the initial symbol table with current scope the
		         * predefined scope. */
		        currentScope = new SymbolTable().getPredefinedScope();
		        /* Set up a dummy symbol table entry for the main program */
		        SymEntry.ProcedureEntry procMain = 
		            currentScope.addProcedure("<main>", ErrorHandler.NO_LOCATION);
		        if(procMain  == null) {
		            errors.fatal("Could not add main program to symbol table",
		                    ErrorHandler.NO_LOCATION);
		        }
		        /* Enter the scope for the main program and save the new local
		         * scope in main's symbol table entry */
		        currentScope = currentScope.newScope(procMain);
		    :}

2.2.2 - Parsing a Block

Block ::= DeclarationList:dl CompoundStatement:b
        {:
            RESULT = new StatementNode.BlockNode(bxleft, dl, b, currentScope);
        :}
    ;

2.2.3 - Parsing a DeclarationList

DeclarationList ::= DeclarationList:dl ProcedureDef:p 
        {:
            /* Add a procedure declaration to the list of declarations */
            dl.addDeclaration(p);
            RESULT = dl;
        :}
    | DeclarationList:dl Declaration
        {:
            /* A non-procedure declaration is not added to the list
             * but added to the symbol table during its parsing. */
            RESULT = dl;
        :}
    | /* empty */
        {:
            RESULT = new DeclNode.DeclListNode();
        :}
    ;

2.2.4 - Adding Declarations to the Symbol Table

Parsing a Constant

NConstEntry(_,NumberNode(INT_TYPE, 10)) \lq N \rq \mapsto \text{ConstEntry}(\_, \text{NumberNode(INT\_TYPE, 10))}\\

Performing Type Checking

2.2.5 - Parsing Constant Definitions in JavaCUP

2.2.6 - Parsing Variables in JavaCUP

xVarEntry(ReferenceType(IdRefType(‘T’))) \def\rq{\text{\textquoteright}} \lq x \rq\mapsto \text{VarEntry(ReferenceType(IdRefType(\lq T\rq)))}
Type ::= TypeIdentifier:type
        {: 
            RESULT = type;
        :}
    | LBRACKET:subr Constant:lo RANGE Constant:hi RBRACKET
        {:
            RESULT = new Type.SubrangeType(subrxleft, lo, hi);
        :}
    | LCURLY:e EnumerationList:elist RBRACKET
        {:
            RESULT = new Type.EnumerationType(exleft, elist, currentScope);
        :}
    ;

TypeIdentifier ::= IDENTIFIER:id
        {: /* As the type identifier may not be defined at this point.
            * IdRefType records the id, as well as the symbol table scope
            * to look it up during type resolution in the static checker.
            */
            RESULT = new Type.IdRefType(idxleft, id, currentScope);
        :}
    | error:err
        {:
            RESULT = Type.ERROR_TYPE;
        :}
    ;

TTypeEntry(SubrangeType(_,NumberNode(INT_TYPE,1), ConstIdNode(‘N’, currentScope))) \def\rq{\text{\textquoteright}} \lq T\rq \mapsto\text{TypeEntry(SubrangeType(\_,NumberNode(INT\_TYPE,1), }\\\text{ConstIdNode(\lq N\rq, currentScope)))}

3.0 - Static Checking

3.1 - Static Checking a Program

3.2 - Static Checking a Procedure

3.2.1 - Detecting Cyclic Definitions

4.0 - Resolving Symbol Table Entries

4.1 - Resolving a Variable Entry

4.1.1 - Parsing a Variable

VarDecl ::= IDENTIFIER:id COLON TypeIdentifier:type SEMICOLON
        {: 
            // Variables are always of ReferenceType.
            if(currentScope.addVariable(id, idxleft, type) == null) {
                errors.error(id + " already declared in this scope", idxleft);
            }
        :}
    |  error
    ;

4.1.2 - Resolving a Variable Type.


4.1.3 - Resolving a Subrange Type

4.2 - Resolving a Constant Entry

4.2.1 - Resolving a ConstEntry(NumberNode(...))

4.2.2 - Resolving a ConstEntry(NegateConst(...))

4.2.3 - Resolving a ConstIdNode

A ConstIdNode is a constant expression consisting of a reference to an identifier.

protected void evaluate() {
//  System.out.println( " ConstExp Resolving " + id + " " + status );
    switch (status) {
        case Unresolved:
            status = Status.Resolving;
            SymEntry entry = scope.lookup(id);
            if (entry instanceof SymEntry.ConstantEntry) {
                SymEntry.ConstantEntry constEntry =
                        (SymEntry.ConstantEntry) entry;
                type = constEntry.getType();
                value = constEntry.getValue();
                status = Status.Resolved;
            } else {
                errors.error("Constant identifier expected", loc);
            }
            break;
        case Resolving:
            errors.error(id + " is circularly defined", loc);
            /* Will resolve to error type and silly value.
             * Set to Resolved to avoid repeated attempts to
             * resolve the unresolvable, and hence avoid
             * unnecessary repeated error messages. */
            status = Status.Resolved;
            break;
        case Resolved:
            /* Already resolved */
            break;
    }
}

4.2 - Example Code and Scope.

var x: int;  // first argument to C
    y: int;  // second argument to C
    res: int;  // result from C
procedure C() =
  var n: int;  // argument to fact
      f: int;  // result from fact
  procedure fact() =
    begin
      // assume 0 <= n
      if n = 0 then
        f := 1    
        // f = n!
      else // 0 < n
       begin
        n := n - 1;
        call fact();  
        // f = n!
        n:= n + 1;
        f := f * n   
        // f = n!
       end
    end; // fact
  begin // C
    n := x;
    call fact();   
    // f = x!
    res := f;
    n := y;
    call fact();   
    // f = y!
    res := res / f; 
    // res = x! / y!
    n := x - y;
    call fact();   
    // f = (x-y)!
    res := res / f   
    // res = x! / (y! * (x-y!))
  end; // C
begin // main program
  x := 6;
  y := 2;
  call C();
  write res
end