Lecture 21

  1. Static Semantics of PL0 Declarations

1.0 - Static Semantics of PL0 Declarations

1.1 - PL0 Abstract Syntax

1.1.1 - Abstract Syntax for Declarations

program::=blockblock::=blk(ds,s)ds::=id⇸dd::=const(c)     type(t)     var(t)     proc(block)c::=n | id | op(-_,c)t::=id | [c..c] \def\pmaps{⇸} \begin{aligned} \text{program} ::&= \text{block}\\ \text{block} ::&= \text{blk(ds,s)}\\ \text{ds} ::&= \text{id}\pmaps\text{d}\\ \text{d} ::&= \text{const(c)}\\ &|\ \ \ \ \ \text{type(t)}\\ &|\ \ \ \ \ \text{var(t)}\\ &|\ \ \ \ \ \text{proc(block)}\\ \text{c}::&= \text{n | id | op(-\_,c)}\\ \text{t}::&=\text{id | [c..c]}\\ \end{aligned}

1.1.2 - Abstract Syntax for Statements

s::=assign(lv,e)     write(e)     read(lv)     call(id)     if(e,s,s)     while(e,s)     list(seq s)lv::=ide::=n | lv | op(unary, e) | op(binary, (e, e))unary::=-_binary::=_ + _ | _ − _ | _ ∗ _ | _/_ | _ = _ | _ 6  _ |          _ < _ | _ ≤ _ | _ > _ | _ ≥ _ \begin{aligned} s ::&= \text{assign(lv,e)}\\ &|\ \ \ \ \ \text{write(e)}\\ &|\ \ \ \ \ \text{read(lv)}\\ &|\ \ \ \ \ \text{call(id)}\\ &|\ \ \ \ \ \text{if(e,s,s)}\\ &|\ \ \ \ \ \text{while(e,s)}\\ &|\ \ \ \ \ \text{list(seq s)}\\ \text{lv}::&=\text{id}\\ \small\text{e}::&= \small\text{n | lv | op(unary, e) | op(binary, (e, e))}\\ \text{unary}::&=\text{-\_}\\ \text{binary}::&=\text{\_ + \_ | \_ − \_ | \_ ∗ \_ | \_/\_ | \_ = \_ | \_ 6 }≠\text{ \_ |}\\ &\ \ \ \ \ \ \ \ \ \text{ \_ < \_ | \_ ≤ \_ | \_ > \_ | \_ ≥ \_} \end{aligned}

1.1.3 - Example PL0 Program

// Declarations for main procedure
const K = 10;
type  S = [-K..K];
		  W = S;
var   x : S;
      y : W;
procedure q() =
	var x : boolean;
	begin
		x := (y > 0);
		if x then write 1 else write 0
	end; // q
begin // main
	x := 2;
	y := -x;
	call q();
	write x
end // main

Abstract Syntax Tree

1.1.4 - Reminder → PL0 Types

1.1.5 - Symbol Table

1.2 - Static Semantics of Constants

  1. Integer Constant Rule
  2. Constant Identifier Rule
  3. Negated Constant Rule
  4. Type Identifier Rule
  5. Subrange Type Rule
  6. Constant Declaration Rule
  7. Constant Entry Rule
  8. Type Declaration Rule
  9. Type Entry Rule

Integer Constant Rule

0nmaxintsymsnen \underline{0\le n \le \text{maxint}}\\ \text{syms}\vdash n\overset e \rightarrow n
010maxintsyms10e10 \underline{0\le{\color{lightgreen}10}\le\text{maxint}}\\ \text{syms}\vdash {\color{lightgreen}10} \overset e \rightarrow {\color{lightgreen}10}

Constant Identifier Rule

iddom(syms)syms(id)=ConstEntry(T,v)symsidev \text{id}\in\text{dom(syms)}\\ \underline{ \text{syms(id)=ConstEntry(T,v)}\\ }\\ \text{syms}\vdash\text{id}\overset e \rightarrow\text{v}
Kdom(syms)syms(K)=ConstEntry(int,10)symsKe10 \text{\color{lightgreen}K}\in\text{dom(syms)}\\ \underline{\text{syms({\color{lightgreen}K})=ConstEntry(int,10)}}\\ \text{syms}\vdash\text{\color{lightgreen}K}\overset e \rightarrow \text{10}

Negated Constant Rule

symsc:intsymscevsymsop(-_, c)ev \text{syms}\vdash c : \text{int}\\ \text{syms}\vdash c \overset e \rightarrow \text{v}\\ \overline{\text{syms}\vdash\text{op(-\_, c)}\overset e\rightarrow -\text{v}}
symsK:intsymsKevsymsop(-_, K)ev \text{syms}\vdash {\color{lightgreen}\text{K}} : \text{int}\\ \text{syms}\vdash {\color{lightgreen}\text{K}} \overset e \rightarrow \text{v}\\ \overline{\text{syms}\vdash\text{op(-\_, {\color{lightgreen}\text{K}})}\overset e\rightarrow -\text{v}}

Type Identifier Rule

iddom(syms)syms(id)=TypeEntry(T)symstypeof(id)=T \text{id}\in\text{dom(syms)}\\ \underline{\text{syms(id)=TypeEntry(T)}}\\ \text{syms}\vdash\text{typeof(id)=T}
Sdom(syms)syms(S)=TypeEntry(subrange(int, -10, 10)symstypeof(S)=subrange(int,-10,10) \text{S}\in\text{dom(syms)}\\ \underline{\text{syms(S)=TypeEntry(subrange(int, -10, 10)}}\\ \text{syms}\vdash\text{typeof(S)=subrange(int,-10,10)}

Subrange Type Rule

symsc0 : Tsymsc0ev0symsc1 : Tsymsc1ev1v0  v1T{int, boolean}symstypeof([c0..c1])=subrange(T,v0,v1) \def\eval{\overset e \rightarrow} \text{syms}\vdash\text{c0 : T}\\ \text{syms}\vdash\text{c0}\eval \text{v}0\\ \text{syms}\vdash\text{c1 : T}\\ \text{syms}\vdash\text{c1}\eval\text{v1}\\ \text{v0 }\le\text{ v1}\\ \text{T}\in\text{\{int, boolean\}}\\ \overline{\text{syms}\vdash\text{typeof([c0..c1])=subrange(T,v0,v1)}}

Constant Declaration Rule

symscevsymsc : TT{int, boolean}symsWFDeclaration(const(c)) \text{syms}\vdash\text{c}\overset e\rightarrow \text{v}\\ \text{syms}\vdash\text{c : T}\\ \text{T}\in\text{\{int, boolean\}}\\ \overline{\text{syms}\vdash\text{WFDeclaration(const(c))}}

Constant Entry Rule

symscevsymsc : TT{int, boolean}entry(syms, const(c))=ConstEntry(T,v) \text{syms}\vdash\text{c}\overset e\rightarrow \text{v}\\ \text{syms}\vdash\text{c : T}\\ \text{T}\in\text{\{int, boolean\}}\\ \overline{\text{entry(syms, const(c))}=\text{ConstEntry(T,v)}}

Type Declaration

symstypeof(t)=TsymsWFDeclaration(type(t)) \text{syms}\vdash\text{typeof(t)=T}\\ \overline{\text{syms}\vdash\text{WFDeclaration(type(t))}}\\

Type Entry

symstypeof(t)=Tentry(syms,type(t))=TypeEntry(T) \text{syms}\vdash\text{typeof(t)=T}\\ \overline{\text{entry(syms,type(t))=TypeEntry(T)}}

1.3 - Static Semantics Rules for Variable Entries

  1. Variable Declaration
  2. Variable Entry

Variable Declaration

symstypeof(t)=TsymsWFDeclaration(var(t)) \text{syms}\vdash\text{typeof(t)=T}\\ \overline{\text{syms}\vdash\text{WFDeclaration(var(t))}}

Variable Entry

symstypeof(t)=Tentry(syms, var(t))=VarEntry(ref(T)) \text{syms}\vdash\text{typeof(t)=T}\\ \overline{\text{entry(syms, var(t))=VarEntry(ref(T))}}

1.4 - Static Semantics Rules for Procedures

  1. Procedure Declaration
  2. Procedure Entry

Procedure Declaration

symsWFBlock(block)symsWFDeclaration(proc(block)) \text{syms}\vdash\text{WFBlock(block)}\\ \overline{\text{syms}\vdash\text{WFDeclaration(proc(block))}}

Procedure Entry

symsWFBlock(block)entry(syms, proc(block))=ProcEntry(block) \text{syms}\vdash\text{WFBlock(block)}\\ \overline{\text{entry(syms, proc(block))=ProcEntry(block)}}

2.0 - Cycles in Declarations

{kconst(op(-_,m)),mconst(op(-_,n)),nconst(op(-_,k)     } \begin{aligned} \{ \text{k}&\mapsto\text{const(op(-\_,m)),}\\ \text{m}&\mapsto\text{const(op(-\_,n)),}\\ \text{n}&\mapsto\text{const(op(-\_,k)}\ \ \ \ \ \} \end{aligned}

2.1 - Uses Operator

We define this operator here, so that we can use it in the definition below.

2.2 - Static Semantics Rules for Procedure Blocks

  1. Well Formed Block
  2. EntryDecl

Well Formed Block

ds_uses = {id1dom(ds); id2uses(ds(id1))id1id2}¬iddom(ds)((idid)ds_uses+)syms=syms {iddom(ds)identryDecl(syms,ds,ds(id))}iddom(ds)(symsWFDeclaration(ds(id)))symsWFStatement(s)symsWFBlock(blk(ds,s)) \begin{array}{cc} \text{ds\_uses = \{id}_1\in\text{dom(ds); id}_2\in\text{uses(ds(id}_1\text{))}\bullet\text{id}_1\mapsto\text{id}_2\}\\ \neg\exists\text{id}\in\text{dom(ds)}\bullet\text{((id}\mapsto\text{id)}\in\text{ds\_uses}^+)\\ \text{syms}'=\text{syms }\oplus \{\text{id}\in\text{dom(ds)}\bullet\text{id}\mapsto\text{entryDecl(syms,ds,ds(id))}\}\\ \forall\text{id}\in\text{dom(ds)}\bullet(\text{syms}'\vdash\text{WFDeclaration(ds(id))})\\ \text{syms}'\vdash\text{WFStatement(s)}\\ \hline \text{syms}\vdash\text{WFBlock(blk(ds,s))} \end{array}
  1. We first know that we want the statements in a procedure block to be well formed.

    • However, we want it to be extended in the context of the symbol table augmented with the definitions defined in ds\color{lightblue}\text{ds} as well

      symsWFStatement(s) \text{syms}'\vdash\text{WFStatement(s)}
  2. We also want the declarations in the procedure definition block to be well formed in the context of the (augmented) symbol table syms\color{lightblue}\text{syms}'

    iddom(ds)symsWFDeclaration(ds(id))) \forall\text{id}\in\text{dom(ds)}\bullet\text{syms}'\vdash\text{WFDeclaration(ds(id)))}
  3. The extended symbol table is defined by the following formal notation:

    syms=syms  {iddom(ds)identryDecl(syms, ds, ds(id))} \text{syms}'=\text{syms}\ \oplus\ \{\text{id}\in\text{dom(ds)}\bullet\text{id}\mapsto\text{entryDecl(syms, ds, ds(id))\}}
    • That is, the augmented symbol table syms\color{lightblue}\text{syms}' is given by adding the existing symbol table to the mapping of every identifier in the declarations ds\color{lightblue}\text{ds} to each entry declaration - this is formally denoted as identryDecl(syms,ds,ds)id))\color{lightblue}\text{id}\mapsto\text{entryDecl(syms,ds,ds)id))}
  4. We also add a rule which describes that we aren’t allowed to have cycles in our declarations ds\color{lightblue}\text{ds}.

    ds_uses = {id1dom(ds); id2uses(ds(id1))id1id2}¬iddom(ds)((idid)ds_uses+) \color{lightblue}\text{ds\_uses = \{id}_1\in\text{dom(ds); id}_2\in\text{uses(ds(id}_1\text{))}\bullet\text{id}_1\mapsto\text{id}_2\}\\ \neg\exists\text{id}\in\text{dom(ds)}\bullet\text{((id}\mapsto\text{id)}\in\text{ds\_uses}^+)\\
    • We first define a “directly uses” relationship:

    • For any identifier in our declarations, id1dom(ds)\color{lightblue}\text{id}_1 \in\text{dom(ds)}, if there is another identifier that directly uses this (original identifier) id2uses(ds(id1))\color{lightblue}\text{id}_2\in\text{uses(ds(id}_1 )) then there exists a mapping between these two identifiers, denoted id1id2\color{lightblue}\text{id}_1\mapsto\text{id}_2

    • However, our constraint shouldn’t just be whether a mapping - we need to consider the case where we have transitive dependencies.

    • Therefore, our constraint is:

      ¬iddom(ds)((idid)ds_uses+) \color{lightblue}\neg\exists\text{id}\in\text{dom(ds)}\bullet ((\text{id}\mapsto\text{id})\in\text{ds\_uses}^+)
    • Where ds_uses+\color{lightblue}\text{ds\_uses}^+ is the transitive closure of this mapping relationship:

      • Transitive Closure
    • That is, an identifier cannot transitively depend on itself.

EntryDecl

We said before, that each identifier gets an entry in the augmented symbol table. What does this mean, and how is it done?

syms=syms{id(dom(ds)uses(d))(identryDecl(syms,ds,ds(id))entryDecl(syms,ds,d)=entry(syms’, d) \def\syms{\text{syms}} \def\id{\text{id}} \begin{array}{cc} \small\syms'=\syms\oplus\{\id\in(\text{dom(ds)}\cap\text{uses(d)})\bullet(\id\mapsto\text{entryDecl(syms,ds,ds(id))}\\ \hline \text{entryDecl(syms,ds,d)=entry(syms', d)} \end{array}

2.3.1 - Example of Using Static Semantics Rules

We want to static check it:

  1. We begin by going through ds\color{lightblue}\text{ds} and constructing the symbol table entries

    1. Kconst(10)\color{lightblue}\text{K}\mapsto\text{const(10)}

      • We initially have the declaration entryDecl(syms,ds,const(10))\color{lightblue}\text{entryDecl(syms,ds,const(10)}) in which we note that const(10)\color{lightgreen}\text{const(10)} doesn’t depend on any identifiers
      • By the Constant Entry rule using Rule 5.1 and Rule 3.1, we have ConstEntry(int, 10)\color{lightblue}\text{ConstEntry(int, 10)}
    2. type([op(-_, K)..K])\color{lightblue}\text{type([op(-\_, K)..K])}

      • We initially have the declaration entryDecl(syms,ds,type([op(-_,K)..K]))\color{lightblue}\text{entryDecl(syms,ds,type([op(-\_,K)..K]))}

      • We note that this declaration depends on the identifier K\color{lightgreen}\text{K} twice

      • We therefore must compute the entry of K\color{lightgreen}\text{K}, and augment the symbol table with this entry (by the EntryDecl Rule)

        entry(syms{KentryDecl(syms,ds,const(10))},type([op(-_, K)..K])) \small\color{lightblue}\text{entry(syms}\oplus\{\text{K}\mapsto\text{entryDecl(syms,ds,const(10))}\}, \text{type([op(-\_, K)..K]))}
      • By our previous calculation, we know that the entry for K\color{lightgreen}\text{K} is ConstEntry(int, 10)\color{lightblue}\text{ConstEntry(int, 10)}

        entry(syms{KConstEntry(int,10)},type([op(-_, K)..K])) \small\color{lightblue}\text{entry(syms}\oplus\{\text{K}\mapsto\text{ConstEntry(int,10)}\}, \text{type([op(-\_, K)..K]))}
      • We now determine what the entry of the subrange type type([op(-_, K)..K]))\color{lightgreen}\text{type([op(-\_, K)..K]))}, in the context of the augmented symbol table entry(syms{KConstEntry(int,10)}\color{lightgreen}\small\text{entry(syms}\oplus\{\text{K}\mapsto\text{ConstEntry(int,10)}\}. We apply the Type Entry rule, as well as Rule 5.5 and 3.2 to get the TypeEntry below:

      TypeEntry(subrange(int, -10, 10)) \color{lightblue}\text{TypeEntry(subrange(int, -10, 10))}
    3. type(S)\color{lightblue}\text{type(S)}

      • We initially have the declaration entryDecl(syms,ds,type(S))\color{lightblue}\text{entryDecl(syms,ds,type(S))}.

      • Since this declaration depends on the identifier S\color{lightgreen}\text{S}, we need to compute the entry of this symbol table with respect to the augmented symbol table. (By the EntryDecl rule)

      • Since the entry depends on S\color{lightgreen}\text{S}, we augment the symbol table with the type entry declaration for it.

        entry(syms{SentryDecl(syms,ds,type([(op(-_, K)..K]))},type(S)) \color{lightblue}\small\text{entry(syms}\oplus\{\text{S}\mapsto\text{entryDecl(syms,ds,type([(op(-\_, K)..K]))\}}, \text{type(S))}
      • By the previous computation, we know that entryDecl(syms,ds,type([(op(-_,K)..K]))\small\color{lightblue}\text{entryDecl(syms,ds,type([(op(-\_,K)..K]))} evaluates to TypeEntry(subrange(int, -10, 10))\color{lightblue}\text{TypeEntry(subrange(int, -10, 10))}

        entry(syms{STypeEntry(subrange(int, -10, 10))},type(S)) \color{lightblue}\small\text{entry(syms}\oplus\{\text{S}\mapsto\text{\color{lightblue}\text{TypeEntry(subrange(int, -10, 10))}\}}, \text{type(S))}
      • By applying the Type Entry rule and Type Identifier rule, we derive that the type is given by

        TypeEntry(subrange(int, -10, 10)) \color{lightblue}\text{TypeEntry(subrange(int, -10, 10))}
    4. var(S)\color{lightblue}\text{var(S)}

      • We initially have the declaration entryDecl(syms, ds, var(S))\color{lightblue}\text{entryDecl(syms, ds, var(S)})

      • Since this declaration depends on the identifier S\color{lightgreen}\text{S}, we need to compute the entry of this symbol table with respect to the augmented symbol table. (By the EntryDecl rule)

      • Since the entry depends on S\color{lightgreen}\text{S}, we augment the symbol table with the type entry declaration for it.

        entry(syms{SentryDecl(syms,ds,type([(op(-_, K)..K]))},var(S)) \color{lightblue}\small\text{entry(syms}\oplus\{\text{S}\mapsto\text{entryDecl(syms,ds,type([(op(-\_, K)..K]))\}}, \text{var(S))}
      • By the previous computation, we know that entryDecl(syms,ds,type([(op(-_,K)..K]))\small\color{lightblue}\text{entryDecl(syms,ds,type([(op(-\_,K)..K]))} evaluates to TypeEntry(subrange(int, -10, 10))\color{lightblue}\text{TypeEntry(subrange(int, -10, 10))}

        entry(syms{STypeEntry(subrange(int, -10, 10))},var(S)) \color{lightblue}\small\text{entry(syms}\oplus\{\text{S}\mapsto\text{\color{lightblue}\text{TypeEntry(subrange(int, -10, 10))}\}}, \text{var(S))}
      • We then apply the Variable Entry and Type Identifier rule to get the following symbol table entry

        VarEntry(ref(subrange(int, -10, 10))) \color{lightblue}\text{VarEntry(ref(subrange(int, -10, 10)))}
    5. var(W)\color{lightblue}\text{var(W)}

      • We initially have the declaration entryDecl(syms, ds, var(W))\color{lightblue}\text{entryDecl(syms, ds, var(W))}

      • Since this declaration depends on the identifier W\color{lightgreen}\text{W}, we need to compute the entry of this symbol table with respect to the augmented symbol table.

      • We augment the symbol table with the type entry declaration for it:

        entry(syms{WentryDecl(syms,ds,type(S)}, var(W)) \color{lightblue}\text{entry(syms}\oplus\text{\{W}\mapsto\text{entryDecl(syms,ds,type(S)}\}\text{, var(W))}
      • From the previous computation, we know that this can be expressed as

        entry(syms{WTypeEntry(subrange(int, -10, 10))}, var(W)) \color{lightblue}\text{entry(syms}\oplus\{\text{W}\mapsto\text{TypeEntry(subrange(int, -10, 10))\}, var(W))}
      • By the Variable Entry rule and Type Identifier rule, we have:

        VarEntry(ref(subrange(int, -10, 10))) \color{lightblue}\text{VarEntry(ref(subrange(int, -10, 10))})
    6. proc({x,},list([]))\color{lightblue}\text{proc(\{x}\mapsto\cdots, \}, \text{list}([\cdots]))

    • We initially have the declaration entryDecl(syms, ds, proc(blk({xvar(boolean)}, list([]))))\scriptsize\color{lightblue}\text{entryDecl(syms, ds, proc(blk(\{x}\mapsto\text{var(boolean)\}, list([}\cdots])))).

    • By the EntryDecl rule, the declaration is transformed to the following, noting that procedures have no parameters, and therefore only depend on the identifiers used in the block.

    • Therefore, by the EntryDecl rule, we have:

      entry(syms, proc(blk({xvar(boolean)}, list([])))) \color{lightblue}\text{entry(syms, proc(blk(\{x}\mapsto\text{var(boolean)\}, list([}\cdots\text{]))))}
    • Additionally, by the Procedure Entry rule, we simplify this to:

      ProcEntry(blk({xvar(boolean)}, list([]))) \color{lightblue}\text{ProcEntry(blk(\{x}\mapsto\text{var(boolean)\}, list([}\cdots\text{])))}
  2. We now concatenate the above derivations together, which will be later used to form the augmented symbol table syms\color{lightblue}\text{syms}'

    ds={KConstEntry(int,10),STypeEntry(subrange(int, -10, 10)),WTypeEntry(subrange(int, -10, 10)),xVarEntry(ref(subrange(int, -10, 10))),yVarEntry(ref(subrange(int, -10, 10))),qProcEntry(blk({xvar(boolean)}, list([])))}\color{lightblue}\begin{aligned} \text{ds}=\{ \text{K}&\mapsto\text{ConstEntry(int,10)},\\ \text{S}&\mapsto\text{TypeEntry(subrange(int, -10, 10))},\\ \text{W}&\mapsto\text{TypeEntry(subrange(int, -10, 10))},\\ \text{x}&\mapsto\text{VarEntry(ref(subrange(int, -10, 10))),}\\ \text{y}&\mapsto\text{VarEntry(ref(subrange(int, -10, 10))),}\\ \text{q}&\mapsto\text{ProcEntry(blk(\{x}\mapsto\text{var(boolean)\}, list([}\cdots\text{])))} \} \end{aligned}
  3. Given that we have worked out the extended symbol table, we can now finish the computation of the rule, which requires the checking of the procedure block. The example specific additions are denoted in green\color{lightgreen}\text{green}

    ds_uses={SK,WS,xS,yW}¬iddom(ds)((idid){SK,WS,xS,yW,WK,xK,yS,yK})syms=syms {KConstEntry(int,10),STypeEntry(subrange(int, -10, 10)),WTypeEntry(subrange(int, -10, 10)),xVarEntry(ref(subrange(int, -10, 10))),yVarEntry(ref(subrange(int, -10, 10))),qProcEntry(blk(xvar(boolean)}, list([])))}id{K, S, W, x, y, q}(symsWFDeclaration(ds(id)))symsWFStatement(list([assign(x,2), assign(y, op(-_, x)), call(q), write(x)]))symsWFBlock(blk(ds,s)) \def\k{\text{K}} \def\s{\text{S}} \def\w{\text{W}} \def\x{\text{x}} \def\y{\text{y}} \def\q{\text{q}} \def\gn{\color{lightgreen}} \begin{array}{cc} \text{ds\_uses} = \{{\color{lightgreen}\s\mapsto\k, \w\mapsto\s, x\mapsto\s, \y\mapsto\w}\}\\ \neg\exists\text{id}\in\text{dom(ds)}\bullet\text{((id}\mapsto\text{id)}\in\{{\color{lightgreen}\s\mapsto\k, \w\mapsto\s, x\mapsto\s, \y\mapsto\w, }\\{\color{lightgreen}\w\mapsto\k, \x\mapsto\k, \y\mapsto\s, \y\mapsto\k}\})\\ \begin{aligned} \text{syms}'=\text{syms }\oplus \{\\\\\\\\\\\\ \end{aligned} \begin{aligned} \gn\text{K}&\gn\mapsto\text{ConstEntry(int,10)},\\ \gn\text{S}&\gn\mapsto\text{TypeEntry(subrange(int, -10, 10))},\\ \gn\text{W}&\gn\mapsto\text{TypeEntry(subrange(int, -10, 10))},\\ \gn\text{x}&\gn\mapsto\text{VarEntry(ref(subrange(int, -10, 10))),}\\ \gn\text{y}&\gn\mapsto\text{VarEntry(ref(subrange(int, -10, 10))),}\\ \gn\text{q}&\gn\mapsto\text{ProcEntry(blk(\x}\mapsto\text{var(boolean)\}, list([}\cdots\text{])))}\}\\ \end{aligned} \\ \forall\text{id}\in\text{\gn\{\k, \s, \w, \x, \y, \q\}}\bullet(\text{syms}'\vdash\text{WFDeclaration(ds(id))})\\ \text{syms}'\vdash\small\text{WFStatement(}{\gn\text{list([assign(x,2), assign(y, op(-\_, x)), call(q), write(x)])}})\\ \hline \text{syms}\vdash\text{WFBlock(blk(ds,s))} \end{array}
    1. Observe here that the original rule form for computing the extended symbol table was

      syms=syms {iddom(ds)identryDecl(syms,ds,ds(id))} \color{lightblue}\text{syms}'=\text{syms }\oplus \{\text{id}\in\text{dom(ds)}\bullet\text{id}\mapsto\text{entryDecl(syms,ds,ds(id))}\}

      Here, we have inserted all of the symbol table entries that we have previously computed.

    2. Now, we need to check that in the context of the new symbol table, the statements in the procedure block are well formed:

    3. We also need to check that all of the identifiers in the declarations ds\color{lightblue} \text{ds} are well formed in the context of the symbol table:

      id{K, S, W, x, y, q}(symsWFDeclaration(ds(id))) \color{lightblue}\forall\text{id}\in{\color{lightgreen}\{\text{K, S, W, x, y, q}\}} \bullet(\text{syms}' \vdash \text{WFDeclaration(ds(id))})
    4. We also need to check that we don’t have any circular definitions of identifiers:

      ds_uses={SK,WS,xS,yW}¬iddom(ds)((idid){SK,WS,xS,yW,WK,xK,yS,yK}) \def\k{\text{K}} \def\s{\text{S}} \def\w{\text{W}} \def\x{\text{x}} \def\y{\text{y}} \def\q{\text{q}} \text{ds\_uses} = \{{\color{lightgreen}\s\mapsto\k, \w\mapsto\s, x\mapsto\s, \y\mapsto\w}\}\\ \neg\exists\text{id}\in\text{dom(ds)}\bullet\text{((id}\mapsto\text{id)}\in\{{\color{lightgreen}\s\mapsto\k, \w\mapsto\s, x\mapsto\s, \y\mapsto\w, }\\{\color{lightgreen}\w\mapsto\k, \x\mapsto\k, \y\mapsto\s, \y\mapsto\k}\})\\

      The entries in ds_uses\color{lightblue}\text{ds\_uses} are derived from the declarations ds\color{lightblue}\text{ds} from before:

      • We have SK\color{lightblue}\text{S}\mapsto\text{K} from the declaration Stype([op(-_, K)..K])\color{lightblue}\text{S}\mapsto\text{type([op(-\_, K)..K])}
      • We have WS\color{lightblue}\text{W}\mapsto\text{S} from the declaration Wtype(S)\color{lightblue}\text{W}\mapsto\text{type(S)}
      • We have xS\color{lightblue}x\mapsto\text{S} from the declaration xvar(S)\color{lightblue}x\mapsto\text{var(S)}
      • We have yW\color{lightblue}y\mapsto\text{W} from the declaration yvar(W)\color{lightblue}y\mapsto\text{var(W)}

      For each of these, we need to compute their transitive closure. It is given as:

      ¬iddom(ds)((idid){SK,WS,xS,yW,WK,xK,yS,yK}) \def\k{\text{K}} \def\s{\text{S}} \def\w{\text{W}} \def\x{\text{x}} \def\y{\text{y}} \def\q{\text{q}} \neg\exists\text{id}\in\text{dom(ds)}\bullet\text{((id}\mapsto\text{id)}\in\{{\color{lightgreen}\s\mapsto\k, \w\mapsto\s, x\mapsto\s, \y\mapsto\w, }\\{\color{lightgreen}\w\mapsto\k, \x\mapsto\k, \y\mapsto\s, \y\mapsto\k}\})
      • Observe that the transitive closure listed contains all of the items in ds_uses\color{lightblue}\text{ds\_uses} as well as all of the transitive items that we can derive (e.g.
        WS,SKWK\def\k{\text{K}} \def\s{\text{S}} \def\w{\text{W}} \def\x{\text{x}} \def\y{\text{y}} \def\q{\text{q}} {\color{lightblue}\w\mapsto\s, \s\mapsto\k} \Rightarrow {\color{lightgreen}\w\mapsto\k}
      • Given this transitive closure, we then have to compute that no identifier depends on itself (in this example, the check passes)

2.3 - Static Semantics Rules for the Main Program

The main program is well formed if:

predefinedWFBlock(block)WFProgram(block) \begin{array}{cc}\text{predefined}\vdash\text{WFBlock(block})\\ \hline \text{WFProgram(block)} \end{array}

Where the symbol table for the predefined identifiers is

predefined={intTypeEntry(int)booleanTypeEntry(boolean)falseConstEntry(boolean, 0)trueConstEntry(boolean, 1)} \begin{aligned} \text{predefined}=\{\text{int}&\mapsto\text{TypeEntry(int)}\\\text{boolean}&\mapsto\text{TypeEntry(boolean)}\\ \text{false}&\mapsto\text{ConstEntry(boolean, 0)}\\ \text{true}&\mapsto\text{ConstEntry(boolean, 1)}\\ &\} \end{aligned}