Lecture 6

  1. Recursive Descent Parsing
  2. Static Semantics of PL0
  3. Symbol Table
  4. Implementation of Static Semantic Checking

1.0 - Recursive Descent Parsing

1.1 - Tutorial 4 Recursive Descent Parser Code

So we’ve got some Java code that can parse PL0 code. How do we get it to actually parse the code?

Compiling test-base0-abs.pl0
Parsing complete
Static semantic analysis complete
Running ...
100
var x: int;
    y: int;
begin
  x := -100;
  if x < 0 then y := -x else y := x;
  write y
end

The PL0 Recursive Descent Parser implemented here is using the error recovery strategy described in the previous lecture. What would the output be if we intentionally mess up the code?

var x: int;
    y: int;
begin
  x = -100; // Replaced :=  with =
  if x < 0 then y := -x else y := x;
  write y
end
Compiling test-base0-abs.pl0
    4   x = -100;
*****     ^  Error: Parse error, expecting ':=' in Assignment
Parsing complete
Static semantic analysis complete
1 error detected.
var x: int;
    y: int;
begin
  x = -100; // Replaced :=  with =
  if x < 0 then then y := -x else y := x; // Extra then keyword.
  write y
end
Compiling test-base0-abs.pl0
    4   x = -100;
*****     ^  Error: Parse error, expecting ':=' in Assignment
    5   if x < 0 then then y := -x else y := x;
*****                 ^ Error: 'then' cannot start a statement.
Parsing complete
Static semantic analysis complete
2 errors detected.

1.2 - Tutorial 4 PL0 Parser Implementation

Specifically looking at the implementation of the PL0 parser for Expressions and Statements.

private final ParseMethod<ExpNode> exp = new ParseMethod<>(
    (Location loc) -> new ExpNode.ErrorNode(loc));

1.2.1 - Constant Declarations

Create constants that represent the start sets for our non-terminal symbols.

/**
 * Set of tokens that may start an LValue.
 */
private final static TokenSet LVALUE_START_SET =
        new TokenSet(Token.IDENTIFIER);
private final static TokenSet FACTOR_START_SET =
        LVALUE_START_SET.union(Token.NUMBER, Token.LPAREN);
private final static TokenSet TERM_START_SET =
        FACTOR_START_SET;
private final static TokenSet EXP_START_SET =
        TERM_START_SET.union(Token.PLUS, Token.MINUS);
private final static TokenSet REL_CONDITION_START_SET =
        EXP_START_SET;
private final static TokenSet CONDITION_START_SET =
        REL_CONDITION_START_SET;

1.2.2 - ParseRelCondition

private ExpNode parseRelCondition(TokenSet recoverSet) {
    return exp.parse("RelCondition", REL_CONDITION_START_SET, recoverSet,
            () -> {
                /* The current token is in REL_CONDITION_START_SET */
                ExpNode cond = parseExp(recoverSet.union(REL_OPS_SET));
                if (tokens.isIn(REL_OPS_SET)) {
                    Location loc = tokens.getLocation();
                    Operator operatorCode =
                            parseRelOp(recoverSet.union(EXP_START_SET));
                    ExpNode right = parseExp(recoverSet);
                    cond = new ExpNode.BinaryNode(loc, operatorCode, cond, right);
                }
                return cond;
            });
}
  1. Note that TokenSet recoverSet is passed as a parameter - this is required as we’re doing error recovery.

  2. Use exp.parse(...) to perform the synchronisation at the start and end of the parsing for us. The parameters to the method are:

    1. Name This is used in the debugger to print out more meaningful messages of what failed.
    2. StartSet The set of tokens from which a RelCondition can start with
    3. RecoverSet The set of tokens from which a RelCondition can start with
    4. Anonymous Function A function that does parsing for the RelCondition
    5. The Anonymous Function is used to define the behaviour of the parser for a RelCondition (in this case)
  3. Since we want to build up the AST representation of the code that we’re parsing, we want to return an ExpNode

    • So rather than using parse(...) we use return exp.parse(...)

    • A RelCondition is defined by the following production:

      RelConditionExp [RelOp Exp]\text{RelCondition}\rightarrow\text{Exp [RelOp Exp]}

    • If the RelCondition is just an Expression, we can just use the parse method and return it

      ExpNode cond = parseExp(recoverSet.unino(REL_OPS_SET));
      ...
      return cond;
      
    • Otherwise, we have to parse the [RelOp Exp]\text{[RelOp Exp]} component of the production

      ExpNode cond = parseExp(recoverSet.union(REL_OPS_SET));
      if (tokens.isIn(REL_OPS_SET)) { // I.e. are we at the start of a RelOp
          Location loc = tokens.getLocation(); // Required for BinaryNode constructor
          Operator operatorCode =
                  parseRelOp(recoverSet.union(EXP_START_SET));
          ExpNode right = parseExp(recoverSet);
          cond = new ExpNode.BinaryNode(loc, operatorCode, cond, right);
      }
      return cond;
      
      • The parseRelOp operation is defined below here
      • Note that the recoverSet is anything that a RelCondition can start with, and the set of tokens that can follow what we’re parsing
        • So when we’re parsing the first Expression in the production, the recoverSet added with the RelOp start set is what we use as the recover set in this instance.
        • When we’re parsing the RelOp, the recoverSet added with the Expression start set is what we use as the recover set in this instance.
        • When we’re parsing the final expression, the recoverSet is just the set of tokens that the production can start with (as there is nothing that follows)
      • After we finish parsing the tokens in the production, we can create the BinaryNode and return it.

1.2.3 - ParseRelOp

Note that the parseRelOp method doesn’t return an ExpNode - it returns an instance of Operator.

1.3 - StatementNodes

Parsing Statements


1.3.1 - Parsing a Conditional Statement / If-Statement

private StatementNode parseIfStatement(TokenSet recoverSet) {
  return stmt.parse("If Statement", Token.KW_IF, recoverSet,
      () -> {
          /* The current token is KW_IF */
          tokens.match(Token.KW_IF); /* cannot fail */
          Location loc = tokens.getLocation();
          ExpNode cond = parseCondition(recoverSet.union(Token.KW_THEN));
          tokens.match(Token.KW_THEN, STATEMENT_START_SET);
          StatementNode thenClause =
              parseStatement(recoverSet.union(Token.KW_ELSE));
          tokens.match(Token.KW_ELSE, STATEMENT_START_SET);
          StatementNode elseClause = parseStatement(recoverSet);
          return new StatementNode.IfNode(loc, cond, thenClause, elseClause);
      });
}

1.3.2 - Parsing a While Statement

1.4 - Types of AST Nodes

1.4.1 - Expression Nodes

2.0 - Static Semantics of PL0

If implemented correctly, the static semantic checker of our compiler should pick up on all of the type errors.

2.1 - PL0 Concrete vs Abstract Syntax

Our static semantics rules determine what we allow (and conversely, what we don’t allow) in our programming language grammar

2.1.1 - Abstract Syntax of PL0

program    ::==    blockblock    ::== blk(ds,s)ds    ::== iddd    ::==    const(c)              | type(t)            | var(t)                     | proc(block)c    ::== n | id | op(-_,c)t    ::==    id | [c..c]s    ::== assign(lv,e)                 | write(e)                 | read(lv)               | call(lv)                if(e,s,s)                   | while(e,s)                   | list(seq s)lv    ::==    ide    :==    n | lv | op(unary, e) | op(binary, (e,e))unary    ::==    -_binary    ::==    _+_ | _-_ | _*_ | _/_ | _=_ | __ | _<_ | __ | _>_ | __ \begin{align*} \text{program\ \ \ \ }&\text{::==\ \ \ \ block}\\ \text{block\ \ \ \ }&\text{::== blk(ds,s)}\\ \text{ds\ \ \ \ }&\text{::== id}\mapsto \text{d}\\ \text{d\ \ \ \ }&\text{::==\ \ \ \ const(c)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| type(t)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }&\text{| var(t)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| proc(block)}\\ \text{c\ \ \ \ }&\text{::== n | id | op(-\_,c)}\\ \text{t\ \ \ \ }&\text{::==\ \ \ \ id | [c..c]}\\ \text{s\ \ \ \ }&\text{::== assign(lv,e)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| write(e)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| read(lv)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| call(lv)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&|\text{ if(e,s,s)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| while(e,s)}\\ \text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }&\text{| list(seq s)}\\ \text{lv\ \ \ \ }&\text{::==\ \ \ \ id}\\ \text{e\ \ \ \ }&\text{:==\ \ \ \ n | lv | op(unary, e) | op(binary, (e,e))}\\ \text{unary\ \ \ \ }&\text{::==\ \ \ \ -\_}\\ \text{binary\ \ \ \ }&\text{::==\ \ \ \ \_+\_ | \_-\_ | \_*\_ | \_/\_ | \_=\_ | \_}\ne\text{\_ | \_<\_ | \_}\le\text{\_ | \_>\_ | \_}\ge\text{\_} \end{align*}

The binary operators in PL0 are indicated above, where the underscore indicates where arguments shall go

2.1.2 - Abstract Syntax Example

Consider the following code, and its abstract syntax.

const  C = 42;
type   S = [-C..C];
var    b : boolean;
       y : S;

2.2 - PL0 Types - Scalar and Reference Types

_-\_ intint\text{int}\rightarrow\text{int}
_+_\_+\_ int×intint\text{int}\times\text{int}\rightarrow\text{int}
_=_\_=\_ int×intboolean\text{int}\times\text{int}\rightarrow\text{boolean}
_=_\_=\_ boolean×booleanboolean\text{boolean}\times\text{boolean}\rightarrow\text{boolean}

3.0 - Symbol Table

In the Parsing phase of a compiler, an AST and Symbol Table are created.

3.1 - Well-Typed Expressions

3.2 - Rules of Static Semantics

3.2.1 - Integer Value

symsn:int \text{syms}\vdash n : \text{int}

Example: Type Inference for 27

syms27:int\text{syms}\vdash 27 : \text{int}

3.2.2 - Symbolic Constant

iddom(syms)syms(id) = ConstEntry(T,v)symsid : T \text{id}\in\text{dom(syms)}\\ \text{\underline{syms(id) = ConstEntry(T,v)}}\\ \text{syms}\vdash \text{id : T}

Example: Type Inference for Constant C

3.2.3 - Variable Identifier

iddom(syms)syms(id)=VarEntry(T)symsid : T \text{id}\in\text{dom(syms)}\\ \text{\underline{syms(id)=VarEntry(T)}}\\ \text{syms}\vdash\text{id : T}

Example: Type Inference for b

3.2.4 - Unary Negation

symse : intsymsop(-_,e) : int \underline{\text{syms}\vdash {\text{e : int}}}\\ \text{syms}\vdash \text{op(-\_,e) : int}

Example: Type Inference for -C

symsC : intsymsop(-_,C) : int \underline{\text{syms}\vdash {\text{C : int}}}\\ \text{syms}\vdash \text{op(-\_,C) : int}

3.2.5 - Binary Operator

symse1 : T1symse2 : T2syms__ : T1×T2T3symsop(__,e1,e2)) : T3 \text{syms}\vdash\text{e1 : T1}\\ \text{syms}\vdash\text{e2 : T2}\\ \underline{\text{syms}\vdash\_\odot\_\ :\ T1\times T2\rightarrow T3}\\ \text{syms}\rightarrow \text{op}(\_\odot\_,\text{e1,e2)) : T3}

Example: Type Inference for -C + 27

3.2.6 - Dereference

The dereference rule allows us to treat an expression of type ref(T)\text{ref(T)} as an expression of type T\text{T} itself.

symse : ref(T)symse : T \underline{\text{syms}\vdash\text{e : ref(T)}}\\ \text{syms}\vdash\text{e : T}

Example: Type Inference for y

symsy : ref(T)symsy : T \underline{\text{syms}\vdash\text{y : ref(T)}}\\ \text{syms}\vdash\text{y : T}

3.2.7 - Widen Subrange

symse:subrange(T,i,j)symse:T \underline{\text{syms} \vdash e :\text{subrange(T,i,j)}}\\ \text{syms}\vdash e : T

Proof for Type Inference for y - Widen Subrange

ydom(syms)syms(id)=VarEntry(ref(subrange(int, -42, 42)))symsy : ref(subrange(int, -42, 42))symsy : subrange(int, -42, 42)symsy : int y\in\text{dom(syms)}\\ \underline{\text{syms(id)}=\text{VarEntry(ref(subrange(int, -42, 42)))}}\\ \underline{\text{syms}\vdash \text{y : ref(subrange(int, -42, 42))}}\\ \underline{\text{syms}\vdash\text{y : subrange(int, -42, 42)}}\\ \text{syms}\vdash\text{y : int}

Step 1: Use Variable Identifier Rule

$\text{id}\in\text{dom(syms)}\ \text{\underline{syms(id)=VarEntry(T)}}\ \text{syms}\vdash\text{id : T}$

Step 2: Use Dereference Rule

$\underline{\text{syms}\vdash\text{e : ref(T)}}\ \text{syms}\vdash\text{e : T}$

Step 3: Use Widen Subrange Rule

$\underline{\text{syms} \vdash e :\text{subrange(T,i,j)}}\ \text{syms}\vdash e : T$

3.2.8 - Narrow Subrange

symse : TijT{int, boolean}symse : subrange(T,i,j) \text{syms}\vdash\text{e : T}\\ i \le j\\ \underline{T\in\{\text{int, boolean}\}}\\ \text{syms}\vdash\text{e : subrange(T,i,j)}

Example: Type Inference for 27

syms27 : int4242int{int, boolean}syms27 : subrange(int, -42, 42) \text{syms}\vdash\text{27 : int}\\ -42 \le42\\ \underline{\text{int}\in\{\text{int, boolean}\}}\\ \text{syms}\vdash\text{27 : subrange(int, -42, 42)}

3.3 - Well-Formed Statements

3.3.1 - Assignment

How do we know whether an assignment is well formed?


Example - Type Inference for y := 4

symsy : ref(subrange(int, -42,42))syms4 : subrange(int,-42,-42)symsWFStatement(assign(y,4)) \text{syms}\vdash\text{y : ref(subrange(int, -42,42))}\\ \underline{\text{syms}\vdash\text{4 : subrange(int,-42,-42)}}\\ \text{syms}\vdash\text{WFStatement(assign(y,4))}

We can reason that the inference syms4 : subrange(int,-42,42)\text{syms}\vdash\text{4 : subrange(int,-42,42)} is correct based on the following:

symse : TijT{int, boolean}symse : subrange(T,i,j) \footnotesize\text{syms}\vdash\text{e : T}\\ i \le j\\ \underline{T\in\{\text{int, boolean}\}}\\ \text{syms}\vdash\text{e : subrange(T,i,j)}

We can reason that the inference symsy : ref(subrange(int, -42,42))\text{syms}\vdash\text{y : ref(subrange(int, -42,42))} based on the following:

iddom(syms)syms(id)=VarEntry(T)symsid : T \scriptsize\text{id}\in\text{dom(syms)}\\ \text{\underline{syms(id)=VarEntry(T)}}\\ \text{syms}\vdash\text{id : T}
ydom(syms)syms(y)=VarEntry(ref(subrange(int,-42,42)))symsy : ref(subrange(int,-42,42)) \text{y}\in\text{dom(syms)}\\ \underline{\text{syms(y)}=\text{VarEntry(ref(subrange(int,-42,42)))}}\\ \text{syms}\vdash\text{y : ref(subrange(int,-42,42))}

3.3.2 - Procedure Call

iddom(syms)syms(id)=ProcEntry(block)symsWFStatement(call(id)) \text{id}\in\text{dom(syms)}\\ \underline{\text{syms(id)=ProcEntry(block)}}\\ \text{syms}\vdash\text{WFStatement(call(id))}

3.3.3 - Read

In other programming languages, read and write wouldn’t be primitives, but we do this in PL0 for simplicity.

symslv : ref(T)T=intT=subrange(int,i,j)symsWFStatement(read(lv)) \text{syms}\vdash\text{lv : ref(T)}\\ \underline{\text{T=int}\vee\text{T=subrange(int,i,j)}}\\ \text{syms}\vdash\text{WFStatement(read(lv))}

3.3.4 - Write

symse : intsymsWFStatement(write(e)) \text{syms}\vdash\text{e : int}\\ \overline{\text{syms}\vdash\text{WFStatement(write(e))}}

3.3.5 - Conditional Rule

symse : booleansymsWFStatement(s1)symsWFStatement(s2)symsWFStatement(if(e,s1,s2)) \footnotesize\text{syms}\vdash\text{e : boolean}\\ \text{syms}\vdash\text{WFStatement(s1)}\\ \text{syms}\vdash\text{WFStatement(s2)}\\ \overline{\text{syms}\vdash\text{WFStatement(if(e,s1,s2))}}

Example - Well Formed Conditional

Show that if x < 0 then y := -x else y := x is a well formed conditional statement.

Firstly, we prove that the statement op(_<_,(x,0))\text{op(\_<\_,(x,0))} is well formed:

That is: symsop(_<_,(x,0)) : boolean\text{syms}\vdash\text{op(\_<\_,(x,0)) : boolean}

  1. From the Variable Identifier rule, we can infer that:

$\footnotesize\text{x}\in\text{dom(syms)}\ \text{syms(x)=VarEntry(int)}\ \overline{\text{syms}\vdash\text{ x : ref(int)}}$

$\scriptsize\color{gray}\text{id}\in\text{dom(syms)}\ \text{\underline{syms(id)=VarEntry(T)}}\ \text{syms}\vdash\text{id : T}$

  1. From the Dereference rule, we can infer that:

symsx : ref(int)syms x : int\footnotesize\underline{\text{syms}\vdash\text{x : ref(int)}}\\\text{syms}\vdash\text{ x : int}

$\footnotesize\color{gray}\underline{\text{syms}\vdash\text{e : ref(T)}}\ \text{syms}\vdash\text{e : T}$

  1. From the Integer Value rule, we can inherently infer that:

syms0 : int\footnotesize\text{syms}\vdash\text{0 : int}

symsn:int\color{gray}\text{syms}\vdash n : \text{int}

  1. From the Binary Operator rule, we can inherently infer that:

syms(op(_<_,(x,0)) : boolean)\footnotesize\text{syms}\vdash\text{(op(\_<\_,(x,0)) : boolean)}

Secondly, we prove that the statement assign(y,-x)\text{assign(y,-x)} is well formed:

That is: symsWFStatement(assign(y,-x))\text{syms}\vdash\text{WFStatement(assign(y,-x))}

  1. From the Variable Identifier rule, we can infer that:

$\footnotesize\text{y}\in\text{dom(syms)}\ \text{syms(y)=VarEntry(int)}\ \overline{\text{syms}\vdash\text{ y : ref(int)}}$

$\scriptsize\color{gray}\text{id}\in\text{dom(syms)}\ \text{\underline{syms(id)=VarEntry(T)}}\ \text{syms}\vdash\text{id : T}$


  1. We can also do the same for the variable x\text{x}

$\footnotesize\text{x}\in\text{dom(syms)}\ \text{syms(x)=VarEntry(int)}\ \overline{\text{syms}\vdash\text{ x : ref(int)}}$

$\scriptsize\color{gray}\text{id}\in\text{dom(syms)}\ \text{\underline{syms(id)=VarEntry(T)}}\ \text{syms}\vdash\text{id : T}$

  1. From the Dereference rule, we can infer that:

symsx : ref(int)syms x : int\footnotesize\underline{\text{syms}\vdash\text{x : ref(int)}}\\\text{syms}\vdash\text{ x : int}

$\footnotesize\color{gray}\underline{\text{syms}\vdash\text{e : ref(T)}}\ \text{syms}\vdash\text{e : T}$

  1. From the Unary Negation rule, we can infer that:

$\footnotesize\text{syms}\vdash\text{x : int}\ \overline{\text{syms}\vdash\text{op(-_,x) : int}}$

$\footnotesize\color{gray}\text{syms}\vdash\text{e : int}\ \overline{\text{syms}\vdash\text{op(-_,e) : int}}$

  1. And then combining Step 1 and Step 4 using the Statement Assignment rule.

$\footnotesize \text{syms}\vdash\text{y : ref(int)}\ \text{syms}\vdash\text{op(-_,x) : int}\ \overline{\text{syms}\vdash\text{WFStatement(assign(y,op(-_, x)))}}$

Thirdly, we prove the statement assign(y,x)\footnotesize\text{assign(y,x)} is well formed:

That is: symsWFStatement(assign(y,x))\text{syms}\vdash\text{WFStatement(assign(y,x))}

  1. From the Variable Identifier rule, we can infer that:

$\footnotesize\text{y}\in\text{dom(syms)}\ \text{syms(y)=VarEntry(int)}\ \overline{\text{syms}\vdash\text{ y : ref(int)}}$

$\scriptsize\color{gray}\text{id}\in\text{dom(syms)}\ \text{\underline{syms(id)=VarEntry(T)}}\ \text{syms}\vdash\text{id : T}$


  1. We can also do the same for the variable x\text{x}

$\footnotesize\text{x}\in\text{dom(syms)}\ \text{syms(x)=VarEntry(int)}\ \overline{\text{syms}\vdash\text{ x : ref(int)}}$

$\scriptsize\color{gray}\text{id}\in\text{dom(syms)}\ \text{\underline{syms(id)=VarEntry(T)}}\ \text{syms}\vdash\text{id : T}$

  1. From the Dereference rule, we can infer that:

symsx : ref(int)syms x : int\footnotesize\underline{\text{syms}\vdash\text{x : ref(int)}}\\\text{syms}\vdash\text{ x : int}

$\footnotesize\color{gray}\underline{\text{syms}\vdash\text{e : ref(T)}}\ \text{syms}\vdash\text{e : T}$

  1. And then combining Step 1 and Step 3 using the Statement Assignment rule.

$\footnotesize \text{syms}\vdash\text{y : ref(int)}\ \text{syms}\vdash\text{x : int}\ \overline{\text{syms}\vdash\text{WFStatement(assign(y,x))}}$

Finally, putting it all together:

$\footnotesize \text{syms}\vdash\text{y : ref(int)}\ \text{syms}\vdash\text{op(-_,x) : int}\ \overline{\text{syms}\vdash\text{WFStatement(assign(y,op(-_, x)))}}$

$\footnotesize \text{syms}\vdash\text{y : ref(int)}\ \text{syms}\vdash\text{x : int}\ \overline{\text{syms}\vdash\text{WFStatement(assign(y,x))}}$

syms(op(_<_,(x,0)) : boolean)\footnotesize\text{syms}\vdash\text{(op(\_<\_,(x,0)) : boolean)}


$\footnotesize\text{syms}\vdash\text{(op(_<_,(x,0)) : boolean)}\ \text{syms}\vdash\text{WFStatement(assign(y,op(-_, x)))}\ \text{syms}\vdash\text{WFStatement(assign(y,x))}\

\overline{\text{syms}\vdash\text{WFStatement(if(op(_<_,(x,0), assign(y,op(-_,x)),assign(y,x)))}}$

3.3.6 - Iteration (While Rule)

For a while loop, if the expression is well formed in the context of the symbol table and is a boolean AND if the statement is well formed, then the while statement will be well formed.

symse : booleansymsWFStatement(s)symsWFStatement(while(e,s)) \footnotesize \text{syms}\vdash\text{e : boolean}\\ \text{syms}\vdash\text{WFStatement(s)}\\ \overline{\text{syms}\vdash\text{WFStatement(while(e,s))}}

3.3.7 - Statement List

For a statement list, if all statements are well formed in the context of the symbol table, then the statement list will be well formed.

selems(ls)  (syms  WFStatement(s))symsWFStatement(list(ls)) \footnotesize \underline{\forall\text{s}\in\text{elems(ls)}\ \bullet\ \text{(syms }\vdash \text{ WFStatement(s))}}\\ \text{syms}\vdash\text{WFStatement(list(ls))}

4.0 - Implementation of Static Semantic Checking

The PL0 Static Checker is implemented in the tree package.

4.1 - Abstract Syntax Tree Classes

4.2 - Symbol Table Implementations

predefined.addOperator(Operator.EQUALS_OP, ErrorHandler.NO_LOCATION, LOGICAL_BINARY);
predefined.addOperator(Operator.NEQUALS_OP, ErrorHandler.NO_LOCATION, LOGICAL_BINARY);
predefined.addOperator(Operator.NEG_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_UNARY);
predefined.addOperator(Operator.ADD_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.SUB_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.MUL_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.DIV_OP, ErrorHandler.NO_LOCATION, ARITHMETIC_BINARY);
predefined.addOperator(Operator.EQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.NEQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.GREATER_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.LESS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.GEQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
predefined.addOperator(Operator.LEQUALS_OP, ErrorHandler.NO_LOCATION,
        INT_RELATIONAL_TYPE);
SymEntry.OperatorEntry addOperator(Operator op, Location loc, Type.FunctionType type);
FunctionType ARITHMETIC_BINARY = new FunctionType(PAIR_INTEGER_TYPE, INTEGER_TYPE);

4.3 - Static Checker Implementation

4.3.1 - Visitor Pattern

public class TraversalIdeal {
  public void visit(Tree.ATree t) {
    visit(t.t1);
    visit(t.t2);
  }
  public void visit(Tree.BTree t) {
     System.out.println(t.n);
  }
  public void visit(Tree.CTree t) {
    visit(t.t1);
    visit(t.t2);
    visit(t.t3);
  }
}