Week 5.1

1.0 - First-Sets and Follow Sets

1.1 - First Set

1.2 - First Set - Formal Definition

1.3 - Calculating First Sets

Then:

First(ϵ)={ϵ}\text{First}(\epsilon)=\{\epsilon\}

First(a)={a}\text{First}(a)=\{a\}

First(α1α2αn)=First(α1)First(α2)First(αn)\text{First}(\alpha_1|\alpha_2|\cdots|\alpha_n)=\text{First}(\alpha_1)\cup\text{First}(\alpha_2)\cup\cdots\cup\text{First}(\alpha_n)

First(A)=First(α1α2αn)\text{First}(A)=\text{First}(\alpha_1|\alpha_2|\cdots|\alpha_n)

If any of the alternatives is nullable, its first set will contain ϵ\epsilon, and hence the fisrt set of the set of alternatives will contain ϵ\epsilon

1.3.1 - Examples of Calculating First Sets (alternatives)

First(ac)=First(a)First(c)={a}{c}={a,c}\def\first{\text{First}} \begin{aligned} \first(a|c)&=\first(a)\cup\first(c)\\ &=\{a\}\cup\{c\}\\ &=\{a,c\} \end{aligned}

Given that the production for AA is AacA\rightarrow a|c then:

First(A)=First(ac)={a,c}\def\first{\text{First}} \begin{aligned} \first(A)&=\first(a|c)\\ &=\{a,c\} \end{aligned}

Then, First(A)\text{First}(A) is just the RHS of its production (which is what we’ve calculated above)

Given the only production for BB is BbϵB\rightarrow b|\epsilon then:

First(B)=First(bϵ)=First(b)First(ϵ)={b,ϵ}\def\first{\text{First}} \begin{aligned}\first(B)&=\first(b|\epsilon)\\ &=\first(b)\cup\first(\epsilon)\\ &=\{b,\epsilon\}\end{aligned}

Then, First(B)\text{First}(B) is just the RHS of its production, which is computed as follows.

Note that First(ϵ)={ϵ}\text{First}(\epsilon)=\{\epsilon\} as ϵ\epsilon is nullable.


1.3.2 - Calculating First-Sets of Symbols.

Let S1,S2,,SnS_1,S_2,\cdots,S_n be (terminal or non-terminal) symbols, then

Example of Calculating First-Sets of Sequences

Let the only production for AA be Aa d  ϵA\rightarrow a\ d\ |\ \epsilon, then the first set is:

First(A)=First(a d  ϵ)=First(a d)First(ϵ)=First(a)First(ϵ)=First(a){ϵ}={a,ϵ}\def\first{\text{First}} \def\e{\epsilon} \def\eset{\{\e\}} \begin{aligned} \first(A)&=\first(a\ d\ |\ \epsilon)\\ &=\first(a\ d)\cup\first(\e)\\ &=\first(a)\cup\first(\e)\\ &=\first(a)\cup\eset\\ &=\{a,\e\} \end{aligned}

Replace AA with the RHS of its production

Separate out the alternative

First(a d)=First(a)\def\first{\text{First}} \def\eset{\text{\{\epsilon\}}} \def\e{\epsilon} \first(a\ d)=\first(a)
First(ϵ)={ϵ}\def\first{\text{First}} \def\eset{\text{\{\epsilon\}}}\def\first{\text{First}} \def\e{\epsilon} \def\eset{\{\e\}} \first(\e)=\eset

However, as A is nullable,

First(A b)=First(A){ϵ}First(b)={a,ϵ}{ϵ}{b}={a,b}\def\first{\text{First}} \def\e{\epsilon} \def\eset{\{\e\}} \begin{aligned} \first(A\ b)&=\first(A)-\eset\cup\first(b)\\ &=\{a,\e\}-\eset\cup\{b\}\\ &=\{a,b\} \end{aligned}

Since AA is nullable, its first set also contains all of the terminal symbols bb can start with.

Example II of Calculating First-Sets of Sequences

Let the following be the only productions for A,BA, B and CC.

Aa  ϵBb  ϵCc  ϵ\def\first{\text{First}} \def\e{\epsilon} \def\eset{\{\e\}} \def\or{\ |\ } \def\prod{\rightarrow} A\prod a\or\e\\ B\prod b\or\e\\ C\prod c\or\e\\

Then each of A,B,CA, B, C is nullable, and hence

First(A B C)=First(A){ϵ}  First(B){ϵ}  First(C){ϵ}{ϵ}={a,ϵ}{ϵ}  {b,ϵ}{ϵ}  {c,ϵ}{ϵ}  {ϵ}={a}  {b}  {c}  {ϵ}={a,b,c,ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ } \def\union{\ \cup\ } \begin{aligned} \first(A\ B\ C) &= \first(A)-\eset\union\first(B)-\eset\union\first(C)-\eset\cup\eset\\ &=\{a,\e\}-\eset\union\{b,\e\}-\eset\union\{c,\e\}-\eset\union\eset\\ &=\{a\}\union\{b\}\union\{c\}\union\{\e\}\\ &=\{a,b,c,\e\} \end{aligned}

1.3.3 - First Sets for Optionals, Repetitions and Groups (EBNF)

1.4 - Calculating First-Sets Algorithmically

1.4.1 - Calculating First Sets Algorithmically

  1. Initially, set all first sets to be the empty set,

    {ϵ}\def\first{\text{First}} \def\e{\epsilon} \def\eset{\{\e\}} \def\or{\ |\ } \def\union{\ \cup\ } \def\prod{\rightarrow} \eset

    1
    A {}{}\{\}
    B {}\{\}
    C {}\{\}
    D {}\{\}
  2. First Pass

    1. Consider the production AB x  C\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}A\prod B\ x\or C - from this we know that
      First(B){ϵ}First(A),First(C){ϵ}First(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)-\eset\in\first(A), \first(C)-\eset\in\first(A)
      • Consider the first alternative, B xB\ x
      • We can’t update or change anything since we don’t know what
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
        is, so we skip it for this iteration
      • Consider the second alternative CC - we also can’t update or change anything since we don’t know what
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
        is so we skip it for this iteration
      • At this stage, we don’t even know that CC is nullable, and therefore can’t deduce that
        ϵFirst(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\epsilon\in\first(A)
    2. Consider the production BC y  D\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}B\prod C\ y \or D - from this we know that First(C){ϵ}First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)-\eset\in\first(B) and First(D){ϵ}First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)-\eset\in\first(B)
      • As in (2a), we realise that we don’t know what First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C) or First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D) is, so we can’t update the first sets
    3. Consider the third production CD z  ϵ\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}C\prod D\ z\or\e - from this we know that {ϵ}First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\eset\in\first(C) and First(D){ϵ}First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)-\eset\in\first(C)
      • Since we know that CC is nullable, we can add {ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\eset to First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
    4. Consider the fourth production D A w\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}D\prod\ A\ w - from this we know that First(A){ϵ}First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)-\eset\in\first(D)
      • As in (2a) and (2b) we don’t know what
        First(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)
        is, so we can’t update
        First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)
    1
    A {}{}\{\}
    B {}\{\}
    C {ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ | \ }\def\union{\ \cup\ }\def\prod{\rightarrow} \{\e\}
    D {}\{\}
  3. Second Pass

    • There is a “next round” as a first set changed in the last iteration -
      First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
    1. Consider the first production,
      AB x  C\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}A\prod B\ x\or C
      • We look at the first alternative in the production, B xB\ x - we can’t do anything as
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
        is still undefined
      • We look at the second alternative in the production CC - we know that CC is nullable, and therefore
        ϵFirst(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\e\in\first(C)
      • Therefore, we can add
        ϵ\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\e
        to
        First(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)
    2. Consider the second production,
      BC y  D\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}B\prod C\ y \or D
      • We look at the first alternative in the production, C yC\ y
      • We don’t know anything about
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
        besides the fact that CC is nullable.
      • Based on this, we know that yy can start BB - we can add
        yFirst(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}y\in\first(B)
      • We look at the second alternative in the production, DD
      • Since
        First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)
        is still unknown, we can’t add anything to
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
    3. Consider the third production,
      CD z  ϵ\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}C\prod D\ z\or\e
      • Consider the first alternative in the production, D zD\ z
      • Since
        First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)
        is still unknown, we can’t add anything to
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
        (we already know that CC is nullable and have already added ϵ\epsilon to
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
      • Consider the second alternative in the production - The symbol ϵ\epsilon has already been added to
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
        to signify that it is nullable.
    4. Consider the fourth production,
      D A w\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}D\prod\ A\ w
      • We know that
        First(A)First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)\in\first(D)
        , and we have ϵ\epsilon in
        First(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)
      • There is a case where A=ϵA=\epsilon, and DD produces ww
      • Therefore, we can add
        wFirst(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}w\in\first(D)
    1 2
    A {}{}\{\} {ϵ}\{\epsilon\}
    B {}\{\} {y}\{y\}
    C {ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ | \ }\def\union{\ \cup\ }\def\prod{\rightarrow} \{\e\} {}\{\}
    D {}\{\} {w}\{w\}
  4. Third Pass

    • There is a “next round” as we updated the first sets of A, B and D in the last iteration
    1. Consider the first production,
      AB x  C\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}A\prod B\ x\or C
      • Consider the first alternative, B xB\ x - we now know that
        yFirst(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}y\in\first(B)
        so we can add
        yFirst(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}y\in\first(A)
      • Since BB is not nullable, we don’t include xx
      • Consider the second alternative, CC - we’ve already added ϵ\epsilon to signify that CC is nullable.
    2. Consider the second production,
      BC y  D\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}B\prod C\ y \or D
      • Consider the first alternative C yC\ y - we set
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
        to be anything CC can start with - Since CC is nullable, we set it to yy
      • Consider the second alternative DD - we add
        FirstDFirst(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first{D}\in\first(B)
        which means that we add ww to
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
    3. Consider the third production,
      CD z  ϵ\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}C\prod D\ z\or\e
      • Consider the first alternative of CC - we now know that
        First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)
        contains ww, so we add that to
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
      • We also don’t add zz as DD is not nullable.
    4. Consider the fourth production,
      D A w\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow} D\prod\ A\ w
      • We know that First(A){ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)-\eset$ now contains yy, and since the production starts with AA, we can add that to
        First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)
    1 2 3
    A {}{}\{\} {ϵ}\{\epsilon\} {ϵ,y}\{\epsilon,y\}
    B {}\{\} {y}\{y\} {y,w}\{y,w\}
    C {ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ | \ }\def\union{\ \cup\ }\def\prod{\rightarrow} \{\e\} {}\{\} {ϵ,w}\{\epsilon,w\}
    D {}\{\} {w}\{w\} {w,y}\{w,y\}
  5. Fourth Pass

    • There is a “next round” as we updated the first sets of B, C and D in the last iteration
    1. Consider the first production,
      AB x  C\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}A\prod B\ x\or C
      • We know that
        First(A)=(First(B){ϵ})  (First(C){ϵ})\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)=(\first(B)-\eset)\union(\first(C)-\eset)
      • We now see that
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
        now contains ww, so we add that to our first set
      • Since CC is nullable, we add ϵ\epsilon to
        First(A)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(A)
    2. Consider the second production,
      BC y  D\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}B\prod C\ y \or D
      • Consider the first alternative C yC\ y - we set
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
        to be anything CC can start with - Since CC is nullable, we set it to yy
      • Consider the second alternative DD - we add
        FirstDFirst(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first{D}\in\first(B)
        which means that we add ww to
        First(B)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(B)
    3. Consider the third production,
      CD z  ϵ\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow} C\prod D\ z\or\e
      • Consider the first alternative, D zD\ z which now has yy - we add this to
        First(C)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(C)
    4. Consider the fourth production,
      D A w\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow} D\prod\ A\ w
      • We know that
        First(A){ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow} \first(A)-\eset
        now contains yy, and since the production starts with AA, we can add that to
        First(D)\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ |\ }\def\union{\ \cup\ }\def\prod{\rightarrow}\first(D)
    1 2 3 4
    A {}{}\{\} {ϵ}\{\epsilon\} {ϵ,y}\{\epsilon,y\} {ϵ,y,w}\{\epsilon, y, w\}
    B {}\{\} {y}\{y\} {y,w}\{y,w\} {y,w}\{y,w\}
    C {ϵ}\def\first{\text{First}}\def\e{\epsilon}\def\eset{\{\e\}}\def\or{\ | \ }\def\union{\ \cup\ }\def\prod{\rightarrow} \{\epsilon\} {}\{\} {ϵ,w}\{\epsilon,w\} {ϵ,w,y}\{\epsilon,w,y\}
    D {}\{\} {w}\{w\} {w,y}\{w,y\} {w,y}\{w,y\}
  6. Fifth Pass

    • There is a “next pass” as the first sets of A, C and D were updated in the previous iteration
    • {we actually perform an iteration and realise nothing changes, so we terminate at the end of this loop}

1.4.2 - Calculating First Sets - Formal Algorithmic Definition