Tutorial 10
Question 1
Hint: Make the following rules:
-
String type and evaluation
-
Identifier type and evaluation
-
Let expression type & evaluation
-
Coerce int to string
-
String concatenation
-
In the rule e::=n∣s∣id∣e+e∣⋯∣let id = e in e end observe that in the last alternative
- The two e’s can be of different types - need to handle this case.
Rule 5 - String Value
syms⊢s : String
Rule 6 - String Evaluation
syms⊢S→eS
Rule 7 - Identifier Type
id∈dom(syms)syms(id)=ConstEntry(T)syms⊢typeof(id)=TRule 8 - Identifier Evaluation
syms⊢id : T
Rule 9 - Let Expression Type
syms⊢id : Tsyms⊢e : Tsyms⊢Rule 5 - String type and evaluation
syms⊢s→essyms⊢s : StringRule Identifiers
id∈dom(syms)syms(id)=ConstEntry(T,V)syms⊢id→eVsyms⊢id : TRule Let
syms⊢e1 : T1syms⊢e2 : T2syms+{id→ConstEntry(T1, V1)}+e2 : T2syms⊢{id}→ConstEntry(T1,V1)}+ e2→eV2syms⊢let id = e1 in e2 : T2syms⊢let id = e1 in e2→eV2Rule Coerce Int to String
syms⊢e : intsyms⊢e→ensyms⊢e : stringsyms⊢e→eintToString(n)Rule String Concatenation
syms⊢e1:stringsyms⊢e2:stringsyms⊢e1→en1vdash⊢e2→en2syms⊢e1 ++ e2:stringsyms⊢e1 ++ e2→en1 ˆn2Question 2
SymTab parseTDS(SymTab symsin) {
match(KW_TYPE);
SymTab symsOut = parseD1(syms);
SymTabl symsOut = parseDS(symsOut);
}
SymTab parseDS(SymTab symsIn) {
if (token.isMatch(D)) {
SymTab symOut = parse(symsIn);
SymTab symsOut = parseDS(symsOut);
return symsOut
}
return symsIn;
}
ID EQUALS T SEMICOLON
SymTab parseD(symsIn) {
String name = token.getName();
match(ID)
match(EQUALS)
Type T = parseT(symsIn);
match(SEMICOLON);
if (symsIn.contains(name)) {
error("Identifier " + name + " already defined in the symbol table");
T = Type.ERROR_TYPE;
}
return symsIn.add(name, T);
}