Tutorial 2

t2.pdf | t2-sol.pdf

Question 1

Part A For each of the following grammars, describe the language (set of strings) that the grammar generates

  1. AA ":" N  NN0  1A\rightarrow A\ ":"\ N\ |\ N\\N\rightarrow 0\ |\ 1

    The grammar produces any non-empty string of “0” or “1” with colons separating the digits

    L(G)={"0", "1", "0:0", "0:1", "1:0", "1:1", "0:0:0","0:0:1", "0:1:0", "0:1:1", "1:0:0",}\scriptsize L(G)=\{\text{"0"},\ \text{"1"},\ \text{"0:0"},\ \text{"0:1"},\ \text{"1:0"},\ \text{"1:1"},\ \text{"0:0:0"},\text{"0:0:1"},\ \text{"0:1:0"},\ \text{"0:1:1"},\ \text{"1:0:0"}, \cdots\}

  2. AA N  ϵN0  1A\rightarrow A\ N\ |\ \epsilon\\N\rightarrow 0\ |\ 1

    The grammar produces any string of “0” or “1”, including the empty string

    L(G)={"","0","1","00","01","10","11","000","001","010","011","100","101","110","111",}\scriptsize L(G)=\{"", "0", "1", "00","01","10","11","000","001","010","011","100","101","110","111",\cdots\}

  3. AA A  NN 0  1A\rightarrow A\ A\ |\ N\\N\rightarrow\ 0\ |\ 1

    The grammar produces any non-empty string of “0” or “1”

    L(G)={"0","1","00","01","10","11","000","001","010","011","100","101","110","111",}\scriptsize L(G)=\{"0", "1", "00","01","10","11","000","001","010","011","100","101","110","111",\cdots\}

  4. AA N  N ϵN0  1A\rightarrow A\ N\ |\ N|\ \epsilon\\N\rightarrow0\ |\ 1

    The grammar produces any string of “0” or “1” including the empty string.

    L(G)={"","0","1","00","01","10","11","000","001","010","011","100","101","110","111",}\scriptsize L(G)=\{"","0", "1", "00","01","10","11","000","001","010","011","100","101","110","111",\cdots\}

Part B For each of the grammars in Q1a state whether or not the grammar is ambiguous. If the grammar is ambiguous, give a string for which there is more than one parse tree, and show the two different parse trees.

  1. The grammar is unambiguous

  2. The grammar is unambiguous

  3. Ambiguous - Consider the string parsing of the string 000

  4. Ambiguous - Consider the parsing of the string 0

Question 2

Part A Given the grammar AA A  "(" A ")" ϵA\rightarrow A\ A\ |\ "("\ A\ ")"\ |\epsilon, describe the language it generates

This language generates any string of arbitrary set of matched parentheses including the empty string

{ϵ,(),(()),((())),,()(),(())(()),((()))((())),,()()(),(())(())(()),((()))((()))((()))}\scriptsize\{\epsilon, (), (()), ((())), \cdots,()(),(())(()),((()))((())),\cdots,()()(),(())(())(()),((()))((()))((()))\cdots\}

Part B Given the grammar AA A  "(" A ")" ϵA\rightarrow A\ A\ |\ "("\ A\ ")"\ |\epsilon, show that the grammar is ambiguous, e.g. consider possible parse trees for the string “()” or even the empty string “”


Question 3

Given the grammar:

EE "+" T  E "" T  TT T "" F  FF "(" E ")"  numberE\rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ | \ T\\T\rightarrow\ T\ "*"\ F\ |\ F\\F\rightarrow\ "("\ E\ ")"\ |\ \bold{number}
write down the leftmost derivations (i.e. expand the leftmost non-terminal in each step), parse trees and abstract syntax trees for the following expressions. You may abbreviate a number token number(3)\bold{number(3)} by 3\bold{3}. (a). 3+4+53+4+5

The leftmost derivation is shown below, where the non-terminal symbol being expanded is over-lined.

EE "" T    E "+" T "" T    T "+" T "" T    F "+" T "" T    3 "+" T "" T    3 "+" F "" T    3 "+" 4 "" T    3 "+" 4 "" F    3 "+" 4 "" 5\overline{E}\Rightarrow\overline{E}\ "-"\ T\\ \ \ \ \ \Rightarrow \overline{E}\ "+"\ T\ "-"\ T\\ \ \ \ \ \Rightarrow \overline{T}\ "+"\ T\ "-"\ T\\ \ \ \ \ \Rightarrow \overline{F}\ "+"\ T\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \overline{T}\ "-"\ T\\ \ \ \ \ \Rightarrow\bold{3}\ "+"\ \overline{F}\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "-"\ \overline{T}\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "-"\ \overline{F}\\\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "-"\ \bold{5}
By EE "" TBy EE "+" TBy ETBy TFBy FnumberBy TFBy FnumberBy TFBy Fnumber\text{By } E\rightarrow E\ "-"\ T\\ \text{By } E\rightarrow E\ "+"\ T\\ \text{By } E\rightarrow T\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}

(b) 3+4563+4*5-6

EE "" T    E "+" T "" T    T "+" T "" T    F "+" T "" T    3 "+" T "" T    3 "+" T "" F "" T    3 "+" F "" F "" T    3 "+" 4 "" F "" T    3 "+" 4 "" 5 "" T    3 "+" 4 "" 5 "" F    3 "+" 4 "" 5 "" 6\overline{E}\Rightarrow \overline{E}\ "-"\ T\\ \ \ \ \ \Rightarrow \overline{E}\ "+"\ T\ "-"\ T\\ \ \ \ \ \Rightarrow \overline{T}\ "+"\ T\ "-"\ T\\ \ \ \ \ \Rightarrow \overline{F}\ "+"\ T\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \overline{T}\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \overline{T}\ "*"\ F\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \overline{F}\ "*"\ F\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "*"\ \overline{F}\ "-"\ T\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "*"\ \bold{5}\ "-"\ \overline{T}\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "*"\ \bold{5}\ "-"\ \overline{F}\\ \ \ \ \ \Rightarrow \bold{3}\ "+"\ \bold{4}\ "*"\ \bold{5}\ "-"\ \bold{6}
By EE "" TBy EE "+" TBy ETBy TFBy FnumberBy TT "" FBy TFBy FnumberBy FnumberBy TFBy Fnumber\text{By } E\rightarrow E\ "-"\ T\\ \text{By } E\rightarrow E\ "+"\ T\\ \text{By } E\rightarrow T\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow T\ "*"\ F\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}

(c) 3(456)3*(4-5*6)

ET    T "" F    F "" F    3 "" F    3 "" "(" E ")"    3 "" "(" E "" T ")"    3 "" "(" T"" T ")"    3 "" "(" F"" T ")"    3 "" "(" 4"" T ")"    3 "" "(" 4"" T ""F ")"    3 "" "(" 4"" F ""F ")"    3 "" "(" 4"" 5 ""F ")"    3 "" "(" 4"" 5 ""6 ")"\overline{E}\Rightarrow \overline{T}\\ \ \ \ \ \Rightarrow\overline{T}\ "*"\ F\\ \ \ \ \ \Rightarrow \overline{F}\ "*"\ F\\ \ \ \ \ \Rightarrow \bold{3}\ "*"\ \overline{F}\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \overline{E}\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \overline{E}\ "-"\ T\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \overline{T}"-"\ T\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \overline{F}"-"\ T\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \bold{4}"-"\ \overline{T}\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \bold{4}"-"\ \overline{T}\ "*" F\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \bold{4}"-"\ \overline{F}\ "*" F\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \bold{4}"-"\ \bold{5}\ "*" F\ ")"\\ \ \ \ \ \Rightarrow \bold{3} \ "*"\ "("\ \bold{4}"-"\ \bold{5}\ "*" \bold{6}\ ")"
By ETBy TT "" FBy TFBy FnumberBy F"(" E ")"By EE "" TBy ETBy TFBy FnumberBy TT "" FBy TFBy FnumberBy Fnumber\text{By } E\rightarrow T\\ \text{By } T\rightarrow T\ "*"\ F\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } F\rightarrow "("\ E\ ")"\\ \text{By } E\rightarrow E\ "-"\ T\\ \text{By } E\rightarrow T\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow T\ "*"\ F\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } F\rightarrow \bold{number}

(d) 3(4+56)3-(4+5*6)

EE "" T    T "" T    F "" T    3 "" T    3 "" F    3 "" "(" E ")"    3 "" "(" E"+"T ")"    3 "" "(" T"+"T ")"    3 "" "(" F"+"T ")"    3 "" "(" 4"+"T ")"    3 "" "(" 4"+"T "" F ")"    3 "" "(" 4"+"F "" F ")"    3 "" "(" 4"+"5 "" F ")"    3 "" "(" 4"+"5 "" 6 ")"\overline{E}\Rightarrow \overline{E}\ "-"\ T\\ \ \ \ \ \Rightarrow\overline{T}\ "-"\ T\\ \ \ \ \ \Rightarrow\overline{F}\ "-"\ T\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ \overline{T}\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ \overline{F}\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \overline{E}\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \overline{E} "+" T\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \overline{T} "+" T\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \overline{F} "+" T\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \bold{4} "+" \overline{T}\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \bold{4} "+" \overline{T}\ "*"\ F\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \bold{4} "+" \overline{F}\ "*"\ F\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \bold{4} "+" \bold{5}\ "*"\ \overline{F}\ ")"\\ \ \ \ \ \Rightarrow\bold{3}\ "-"\ "("\ \bold{4} "+" \bold{5}\ "*"\ \bold{6}\ ")"
By EE "" TBy ETBy TFBy FnumberBy TFBy F"(" E ")"By EE "+" TBy ETBy TFBy FnumberBy TT "" FBy TFBy FnumberBy Fnumber\text{By } E\rightarrow E\ "-"\ T\\ \text{By } E\rightarrow T\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow "("\ E\ ")"\\ \text{By } E\rightarrow E\ "+"\ T\\ \text{By } E\rightarrow T\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } T\rightarrow T\ "*"\ F\\ \text{By } T\rightarrow F\\ \text{By } F\rightarrow \bold{number}\\ \text{By } F\rightarrow \bold{number}

Question 4

The following grammar for if-then-else statements is proposed to remedy the dangling-else ambiguity:

stmtif cond then stmt | matched_stmtmatched_stmtif cond then matched_stmt else stmt | othercond true | false\text{stmt}\rightarrow\text{if {\it cond} then {\it stmt} | {\it matched\_stmt}}\\ \text{matched\_stmt}\rightarrow\text{if {\it cond} then {\it matched\_stmt} else {\it stmt} | other}\\ \text{{\it cond}}\rightarrow\text{ {\bf true | false}}

Show that it is still ambiguous

if false then {
  if false then 
    other
  else {
    if false then 
      other
    else 
      other
  }
}
if false then {
  if false then
    other
  else {
    if false then {
      other
    }
} else
  other
}

Question 5

Unary minus can be added in several ways to the simple arithmetic expression grammar:

EE "+" T  E "" T  TTT "" F  FF "(" E ")"  numberE \rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ | \ T\\T \rightarrow T\ "*"\ F\ |\ F\\F\rightarrow\ "("\ E\ ")"\ |\ \bold{number}

Revise the grammar for each of the cases that follow, so that it satisfies the stated rule.

  1. At most one unary minus is allowed in each expression, and it must come at the beginning of an expression

    23-2-3
    2(3)-2-(-3)
    232--3

    First Solution

    • We can make a distinction at the top level between an expression that starts with a unary minus (NE) and one that doesn’t (E) - those have similar syntax:

      SNE  ENENE "+" T  E "" T  "" TEE "+" T  E "" T  TTT "" F  FF "(" S ")"  numberS \rightarrow NE\ |\ E\\ NE\rightarrow NE\ "+"\ T\ |\ E\ "-"\ T\ |\ "-"\ T\\ E\rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ |\ T\\ T\rightarrow T\ "*"\ F\ |\ F\\ F\rightarrow\ "("\ S\ ")"\ |\ \bold{number}

    Second Solution

    The tutor had this solution, but the expression with the unary operator on a separate line - this is the same as this solution.

    • An alternative simpler syntax also derives the correct sentence:

      EE "+" T  E "" T  T ""TT T "" F  FF"(" E ")"  numberE\rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ |\ T\ | "-"T\\ T\rightarrow\ T\ "*"\ F\ |\ F\\ F\rightarrow "("\ E\ ")"\ |\ \bold{number}

Note that while both of these grammars derive the same language (set of strings), they produce different parse trees.

  1. At most one unary minus is allowed before a number or left parenthesis

    23-2--3
    2--2
    23-2---3

    Sample Solution (Same as Tutor’s Solution)

    EE "+" T  E "" T  T ""TT T "" U  UU""F  FF"(" E ")"  numberE\rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ |\ T\ | "-"T\\ T\rightarrow\ T\ "*"\ U\ |\ U\\ U\rightarrow "-"F\ |\ F\\ F\rightarrow "("\ E\ ")"\ |\ \bold{number}
  2. Arbitrarily many unary minuses are allowed before numbers and left parentheses, so everything above is legal.

    Sample Solution

    EE "+" T  E "" T  TTT "" F  FF "" F  "(" E ")"  numberE\rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ |\ T\\ T\rightarrow T\ "*"\ F\ |\ F\\ F\rightarrow\ "-"\ F\ |\ "("\ E\ ")"\ |\ \bold{number}

    Tutor’s Solution

    EE "+" T  E "" T  TE""ETT "" F  FF  "(" E ")"  numberE\rightarrow E\ "+"\ T\ |\ E\ "-"\ T\ |\ T\\ E\rightarrow"-"E\\ T\rightarrow T\ "*"\ F\ |\ F\\ F\rightarrow\ \ "("\ E\ ")"\ |\ \bold{number}