Tutorial 5

For a production of the form AαNβA\rightarrow\alpha N\beta Add First(β){ϵ}Follow(N)\text{First}(\beta)-\{\epsilon\}\in\text{Follow}(N)


Question 1

Consider the following grammar for possibly nested lists of numbers and identifiers enclosed in parentheses. The symbols NUM and ID are terminal symbols (lexical tokens) that matches numbers and identifiers, respectively.

lexpatom | listatomNUM  IDlist’(’ lexpSeq ’)’lexpseqlexpSeq lexp | lexp \begin{aligned} \text{lexp}&\rightarrow\text{atom | list}\\ \text{atom}&\rightarrow\bold{NUM\ |\ ID}\\ \text{list}&\rightarrow\text{'(' lexpSeq ')'}\\ \text{lexpseq}&\rightarrow\text {lexpSeq lexp | lexp} \end{aligned}
  1. Remove any left recursion in the grammar

    To remove the left recursion from: AAαβA\rightarrow A\alpha|\beta Which matches a β\beta followed by one or more occurrences of α\alpha, one can re-write the production as follows:

    AβAAϵαAA\rightarrow \beta A'\\A'\rightarrow \epsilon | \alpha A'

    • The left recursion in this grammar occurs in the production

      lexpseqlexpSeq lexp | lexp\text{lexpseq}\rightarrow\text{lexpSeq lexp | lexp}

      • We resolve this by introducing a new non-terminal symbol, say lexpNext\text{lexpNext}, and a new production
      • Using the formula defined above, A = lexpseq, alpha=lexp, beta=lexp
      lexpseqlexp lexpNextlexpNextϵα lexpNext’\text{lexpseq}\rightarrow\text{lexp lexpNext}\\ \text{lexpNext}\rightarrow\epsilon|\alpha \text{ lexpNext'}
    • Finally, the productions are:

      lexpatom | listatomNUM  IDlist’(’ lexpSeq ’)’lexpseqlexp lexpNextlexpNextϵlexp lexpNext’\begin{aligned} \text{lexp}&\rightarrow\text{atom | list}\\ \text{atom}&\rightarrow\bold{NUM\ |\ ID}\\ \text{list}&\rightarrow\text{'(' lexpSeq ')'}\\ \text{lexpseq}&\rightarrow\text{lexp lexpNext}\\ \text{lexpNext}&\rightarrow\epsilon|\text{lexp lexpNext'} \end{aligned}
  2. Construct First\text{First} and Follow\text{Follow} sets for the non-terminals of the resulting grammar for the question above

    • The non-terminal symbols in the productions above are:
      {lexp, atom, list,lexpSeq, lexpNext}\{\text{lexp, atom, list,lexpSeq, lexpNext}\}
    First(NUM)=\def\first{\text{First}} \first(\bold{NUM})=
  3. d

lexpatom | listatomNUM  IDlist’(’ lexpSeq ’)’lexpseqlexp lexpNextlexpNextϵlexp lexpNext\begin{aligned} \text{lexp}&\rightarrow\text{atom | list}\\ \text{atom}&\rightarrow\bold{NUM\ |\ ID}\\ \text{list}&\rightarrow\text{'(' lexpSeq ')'}\\ \text{lexpseq}&\rightarrow\text{lexp lexpNext}\\ \text{lexpNext}&\rightarrow\epsilon|\text{lexp lexpNext} \end{aligned}
lexp NUM, ID NUM, ID NUM, ID
atom {NUM, ID} {NUM, ID} {NUM, ID} {NUM, ID}
list {’(’} {’(’} {’(’} {’(’}
lexpSeq NUM, ID NUM, ID, “(”
lexpNext ϵ\epsilon ϵ\epsilon ϵ\epsilon ϵ\epsilon

d.

The following productions are given from before

lexpseqlexp lexpNextlexpNextϵlexp lexpNext\text{lexpseq}\rightarrow\text{lexp lexpNext}\\ \text{lexpNext}\rightarrow\epsilon|\text{lexp lexpNext}

We can convert to extended bnf form or some shit

lexpSeq → lexp {lexp}

Q2

Type → INT | Type’

Type’ → \epsilon | LBRACKET RBRACKET Type’

Convert to EBNF

Type → INT {LB RB}