
Phases of a Compiler
Ian Hayes

14 February 2019



Lexical
Analysis

Syntax
Analysis

Type 
Checking

Lexical
Tokens

Abstract Syntax Tree

Symbol Table

Code
Generation

Phases of a compiler

Machine
Code

Source
Code



Lexical
Analysis

Syntax
Analysis

Type 
Checking

Lexical
Tokens

Abstract Syntax Tree

Symbol Table

Interpreter

Phases of a interpreter

Source
Code



Lexical Analysis

✤ Input: a sequence of characters representing a program

✤ Output: a sequence of lexical tokens

✤ Lexical tokens: identifiers, numbers, keywords (e.g., “if”, “while”), 
symbols (e.g., “+”, “<=”)

✤ Ignores white space: blanks, tabs, newlines, carriage returns, form 
feeds

✤ Comments: treated as white space 



Syntax Analysis

✤ Input: a sequence of lexical tokens

✤ Output: an abstract syntax tree and symbol table

✤ Symbol table

✤ contains information about all identifiers that are defined within 
the program (plus a few predefined ones)

✤ may be organised into scopes, e.g, identifiers defined within a 
procedure



Type Checking 
a.k.a. Static Semantic Analysis

✤ Input: Symbol table and abstract syntax tree

✤ Output: Updated symbol table and abstract syntax tree

✤ Resolves all references to identifiers

✤ updates symbol table entries with type information

✤ checks abstract syntax tree for type correctness

✤ updates abstract syntax tree with type coercions



Code Generation

✤ Input: Symbol table and (updated) abstract syntax tree

✤ Output: code for the target machine

✤ May include

✤ machine-independent optimisations

✤ machine-dependent optimisations

✤ instruction selection

✤ register allocation



Interpreter

✤ Input: Symbol table and (updated) abstract syntax tree

✤ Interprets the abstract syntax tree directly to execute the program

✤ the program being interpreted may have inputs and outputs

✤ Less time compiling (no code generation) 

✤ Slower to execute the program

✤ More commonly used for high-level dynamically typed languages


