PLO Compiler Data Structures

Ian J. Hayes
April 20, 2020

While parsing a PLO program, the compiler builds an abstract syntax tree (AST) structure to represent the pro-
gram as well as a symbol table containing information about all the identifiers declared in the program. These
structures are used for checking the static semantics (type correctness) of the program and code generation.

1 Symbol table

The symbol table (Java class SymbolTable) contains an entry (class SymEntry) for every identifier declared in
a PLO program being compiled. Every entry records: the location in the source code (line/column effectively) at
which the identifier was declared; the lexical level of the scope in which it is declared; and its type. There are
entries for the following.

ConstEntry for a symbolic constant, which has an expression tree used to define the constant as well as the
value of the constant once the expression tree has been evaluated;

TypeEntry for a type identifier;
VarEntry for a variable, which has an offset (address) once the variable has been allocated; and

ProcedureEntry procedure definition, which has a symbol table scope for the local declarations within the
procedure and the abstract syntax tree for the block representing the body of the procedure. For code
generation (later in the course) the location of the start of the code for the procedure (once the code
generation for the procedure has begun).

Because a procedure may have local declarations, (i.e., declarations only visible within the procedure) the symbol
table is organised into scopes (class Scope), one for each procedure and one for the main program, which form
a tree-structured hierarchy that matches the nesting structure of procedure declarations. All the symbol table
classes may be found in the package syms.

2 Abstract syntax tree

The abstract syntax tree is represented in the compiler by three Java classes DeclNode, StatementNode and
ExpNode, and their subtypes (described below). A DeclListNode groups the abstract syntax tree nodes for the
procedures into a list. Each entry in the list represents a single procedure and includes the procedure’s symbol
table entry (see Section 1), and a BlockNode representing its body. In DecINode.java:

DecINode() with subclasses
DeclListNode(List(DeclNode) decls)
ProcedureNode(SymEntry.ProcedureEntry procEntry, BlockNode body)

The abstract class StatementNode represents a statement in the abstract syntax tree; it has a subclass for each
kind of statement. In addition, ErrorNode caters for erroneous statements. All statement nodes contain a Loca-
tion, which is the location in the source code corresponding to the node. A BlockNode represents the body of a
procedure (or the main program). In StatementNode.java:

StatementNode(Location loc) with subclasses
ErrorNode()
BlockNode(DeclListNode procedures, StatementNode body, Scope blockLocals)
AssignmentNode(ExpNode Ivalue, ExpNode €)
WriteNode(ExpNode e)
CallNode(String id)
ListNode(List(StatementNode) sl)
IfNode(ExpNode cond, StatementNode s1, StatementNode s2)
WhileNode(ExpNode cond, StatementNode s)

1



2 PLO Abstract Syntax (April 20, 2020)

There is no tree node corresponding to a read statement; instead a read statement is represented by an Assign-
mentNode where the left hand side is the variable being read into and the right hand side is a special expression
node (ReadNode) representing the action of reading a value from standard input.

The abstract class ExpNode represents expressions in the abstract syntax tree; it has a subclass for each kind of
expression. In addition, ErrorNode caters for erroneous expressions. All expression nodes have a location (in
the source code) and a type (of the expression). In ExpNode.java:

ExpNode(Location loc, Type t) with subclasses
ErrorNode()
ConstNode(int value)
IdentifierNode(String id)
ReadNode()
BinaryNode(Operator op, ExpNode left, ExpNode right)
UnaryNode(Operator op, ExpNode arg)
VariableNode(SymEntry.VarEntry entry)
DereferenceNode(ExpNode leftValue)
NarrowSubrangeNode(ExpNode €)
WidenSubrangeNode(ExpNode e)

IdentifierNode is used during parsing to represent a reference to either a symbolic constant or a variable. As part
of the static semantics (type checking) phase it will be transformed to either a ConstNode or a VariableNode.
A number of other node types are only introduced in the static semantics phase:

e a DereferenceNode represents a dereference of a variable address (left value) to access its (right) value;
e an expression of a subrange type can be widened to the base type of the subrange (WidenSubrangeNode);
e an expression of a type, T, can be narrowed to a subrange of T (NarrowSubrangeNode).
An expression like x+1 is represented by a BinaryNode After parsing the structure is
BinaryNode(ADD_OP, IdentifierNode("x”), ConstNode(1))

After static semantic analysis, if we assume X was declared as a variable, with symbol table entry Entry_ X, the
tree will become

BinaryNode(ADD_OP, DereferenceNode(VariableNode(Entry x)), ConstNode(1))

All the abstract syntax tree classes may be found in the package tree.



