1.0 - Negative-Weight Graphs

1.1 - Graphs without Negative Weight Edges

Let

pn=v1v2v3vn p_n=v_1\rightarrow v_2\rightarrow v_3\rightarrow \cdots\rightarrow v_n

be any shortest path from v1v_1 to vnv_n in a weighted graph with no negative weight edges

For all viv1,v2,,vn1v_i\in v_1, v_2, \cdots, v_{n-1}, we must have that the path prefix

pi=v1v2v3vi p_i=v_1\rightarrow v_2\rightarrow v_3\rightarrow\cdots\rightarrow v_i

is a shortest path from v1v_1 to viv_i and weight(pi)weight(pn)\text{weight}(p_i)\le\text{weight}(p_n)

distance(v1,vi)distance(v1,vn)\text{distance}(v_1, v_i)\le \text{distance}(v_1, v_n)

1.2 - Graphs with Negative-Weight Edges

1.3 - Bellman-Ford Solution

🌱 Shortest paths (of length of at least V1V-1) with negative edge weights of length nn can be found after relaxing all vertices n1n-1 times (regardless of order of edge relaxations)

1.4 - Bellman-Ford Algorithm

bellman_ford(G, w, s)
	// G is the graph, w is the weight function, s is the source vertex
	init_single_source(G, s)
  // Relax each edge V - 1 times to find shortest paths
	for i = 1 to |G.V| - 1
			for each edge (u, v) ∈ G.E
					Relax(u, v, w)
  // Check for negative-weighte cycles reachable from s
	for each edge (u, v) ∈ G.E
			// If the relaxation condition is met, a negative-weight cycle
			//     is detected
			if v.d > u.d + w(u, v)
					// Negative-weight cycle detected
					return false
	return true

1.4.1 - Bellman Ford Algorithm Analysis

1.5 - Priority-First Search

are specialisations of a priority-first search

1.5.1 - What is a Priority-First Search

PriorityFirstSearch(G, s, ...)
    init_single_source(G, s)
    Q = G.V
    while Q != ∅
			u = extract_min(Q)
      for each vertex v in G.adj[u]
          relax(u, v, ...)
init_single_source(G, s)
    for each vertex v in G.V
        v.key = infinity
        v.pi = nil
    s.key = 0

relax(u, v, ...)
    if v.key > PRIORITY
        v.key = PRIORITY
        v.pi = u

1.5.2 - Prim’s Algorithm as a Priority-First Search

At the end, the priority-first search tree is a minimum spanning tree.

1.5.3 - Dijkstra’s Algorithm

At the end, the priority-first search tree is a shortest-path tree