1.0 - Dynamic All-Pairs Shortest Paths Algorithms

1.1 - Recursive Definition of All-Pairs

1.1.1 - Naive, Slow Solution

1.1.2 - Improved Solution

faster_apsp(n):
		// L[m, i, j] is the weight of the shortest path from i to j of at most m edges
    L = new int[2(n-1) - 1][n][n]
    L[1] = weights
    m = 1

    while m < n - 1
        d = L[m]
        d' = L[2m]
        for i = 1 to n
            for j = 1 to n
                for k = 1 to n
                    d'[i, j] = min(d'[i, j], d[i, k] + d[k, j])
        m = 2m

1.2 - Floyd Warshall Algorithm

$\def\t{\ \ \ \ } 1\ \text{floyd-warshall}(W)\ 2\ \t n = W.\text{rows}\ 3\ \t D^{(0)} = W\ 4\ \t \bold{for\ } k = 1 \bold{\ to\ } n\ 5\ \t\t \text{let } D^{(k)}=(d^{(k)}{ij}) \text{ be a new } n \times n \text{ matrix}\ 6\ \t\t\bold{for\ } i = 1 \bold{\ to \ } n\ 7 \t\t\t \bold{for\ } j = 1\bold{\ to\ } n\ 8 \ \t\t\t\t d^{(k)}{ij}= \min(d^{k-1}{ij}, d^{k-1}{ik} + d^{k-1}_{kj})\ 9 \ \bold{return\ } D^{(n)}$

1.2.1 - Floyd Warshall Algorithm Example

1.3 - Aside: Johnson’s Algorithm